Thermochemical Humidity Detection in Harsh or Non-Steady Environments

128173-Thumbnail Image.png
Description

We present a new method of chemical quantification utilizing thermal analysis for the detection of relative humidity. By measuring the temperature change of a hydrophilically-modified temperature sensing element vs. a hydrophobically-modified reference element, the total heat from chemical interactions in

We present a new method of chemical quantification utilizing thermal analysis for the detection of relative humidity. By measuring the temperature change of a hydrophilically-modified temperature sensing element vs. a hydrophobically-modified reference element, the total heat from chemical interactions in the sensing element can be measured and used to calculate a change in relative humidity. We have probed the concept by assuming constant temperature streams, and having constant reference humidity (~0% in this case). The concept has been probed with the two methods presented here: (1) a thermistor-based method and (2) a thermographic method. For the first method, a hydrophilically-modified thermistor was used, and a detection range of 0–75% relative humidity was demonstrated. For the second method, a hydrophilically-modified disposable surface (sensing element) and thermal camera were used, and thermal signatures for different relative humidity were demonstrated. These new methods offer opportunities in either chemically harsh environments or in rapidly changing environments. For sensing humidity in a chemically harsh environment, a hydrophilically-modified thermistor can provide a sensing method, eliminating the exposure of metallic contacts, which can be easily corroded by the environment. On the other hand, the thermographic method can be applied with a disposable non-contact sensing element, which is a low-cost upkeep option in environments where damage or fouling is inevitable. In addition, for environments that are rapidly changing, the thermographic method could potentially provide a very rapid humidity measurement as the chemical interactions are rapid and their changes are easily quantified.

Date Created
2017-05-24
Agent

CFD analysis of wind power potential across rooftop gaps of tall buildings

155407-Thumbnail Image.png
Description
This study uses Computational Fluid Dynamics (CFD) modeling to analyze the

dependence of wind power potential and turbulence intensity on aerodynamic design of a

special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using

ANSYS Fluent are carried out

This study uses Computational Fluid Dynamics (CFD) modeling to analyze the

dependence of wind power potential and turbulence intensity on aerodynamic design of a

special type of building with a nuzzle-like gap at its rooftop. Numerical simulations using

ANSYS Fluent are carried out to quantify the above-mentioned dependency due to three

major geometric parameters of the building: (i) the height of the building, (ii) the depth of

the roof-top gap, and (iii) the width of the roof-top gap. The height of the building is varied

from 8 m to 24 m. Likewise, the gap depth is varied from 3 m to 5 m and the gap width

from 2 m to 4 m. The aim of this entire research is to relate these geometric parameters of

the building to the maximum value and the spatial pattern of wind power potential across

the roof-top gap. These outcomes help guide the design of the roof-top geometry for wind

power applications and determine the ideal position for mounting a micro wind turbine.

From these outcomes, it is suggested that the wind power potential is greatly affected by

the increasing gap width or gap depth. It, however, remains insensitive to the increasing

building height, unlike turbulence intensity which increases with increasing building

height. After performing a set of simulations with varying building geometry to quantify

the wind power potential before the installation of a turbine, another set of simulations is

conducted by installing a static turbine within the roof-top gap. The results from the latter

are used to further adjust the estimate of wind power potential. Recommendations are made

for future applications based on the findings from the numerical simulations.
Date Created
2017
Agent

A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device With Disposable Sensors

128676-Thumbnail Image.png
Description

A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the

A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

Date Created
2016-12-03
Agent

Development of environmentally responsive multifunctional microgel particles: synthesis, characterization and applications

154071-Thumbnail Image.png
Description
Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by

Environmentally responsive microgels have drawn significant attention due to their intrinsic ability to change volume in response to various external stimuli such as pH, temperature, osmotic pressure, or electric and magnetic fields. The extent of particle swelling is controlled by the nature of the polymer-solvent interaction. This thesis focuses on design and synthesis of environmentally responsive microgels and their composites, and encompasses methods of utilizing microgel systems in applications as vehicles for the adsorption, retention, and targeted delivery of chemical species. Furthermore, self-assembled microgel particles at ionic liquid (IL)-water interfaces demonstrate responsive colloidal lattice morphology. The thesis first reports on the fundamental aspects of synthesis, functionalization, and characteristic properties of multifunctional environmentally responsive microgels derived from poly(N-isopropylacrylamide) (PNIPAm) and other functional co-monomers. In particular, the uptake and release of active chemical species such as rheology modifiers into and from these ionic microgels is demonstrated. Moreover, a facile tunable method for the formation of organic-inorganic composites with Fe3O4 nanoparticles adsorbed and embedded within ionic microgel particles is explored. Additionally, the development of zwitterionic microgels (ZI-MG) is presented. These aqueous ZI-MG dispersions exhibit reversible parabolic swelling as a function of pH and display a minimum hydrodynamic diameter at a tunable isoelectric point (IEP). This study also elucidates the controlled uptake and release of surfactants from these particle systems. The extent of surfactant loading and the ensuing relative swelling/deswelling behaviors within the polymer networks are explained in terms of their binding interactions. The latter part of this thesis highlights the versatility of fluorescently labeled microgel particles as stabilizers for IL-water droplets. When the prepared particles form monolayers and equilibrate at the liquid-liquid interface, the colloidal lattice organization may re-order itself depending on the surface charge of these particles. Finally, it is shown that the spontaneously formed and densely packed layers of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species.
Date Created
2015
Agent

Acetone as Biomarker for Ketosis Buildup Capability: A Study in Healthy Individuals Under Combined High Fat and Starvation Diets

Description

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK).

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy.

Methods:
A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual’s energy expenditure. On Day 7, ketone buildup from FK was measured.

Results:
A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R[superscript 2] = 0.92), and lower body mass index (R[superscript 2] = 0.71) was observed during FK.

Date Created
2015-04-22
Agent

Colorimetric Humidity Sensor Based on Liquid Composite Materials for the Monitoring of Food and Pharmaceuticals

129235-Thumbnail Image.png
Description

Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper, the sensor responds to the environment’s relative humidity and changes

Using supported ionic-liquid membrane (SILM)-inspired methodologies, we have synthesized, characterized, and developed a humidity sensor by coating a liquid composite material onto a hygroscopic, porous substrate. Similar to pH paper, the sensor responds to the environment’s relative humidity and changes color accordingly. The humidity indicator is prepared by casting a few microliters of low-toxicity reagents on a nontoxic substrate. The sensing material is a newly synthesized liquid composite that comprises a hygroscopic medium for environmental humidity capture and a color indicator that translates the humidity level into a distinct color change. Sodium borohydride was used to form a liquid composite medium, and DenimBlu30 dye was used as a redox indicator. The liquid composite medium provides a hygroscopic response to the relative humidity, and DenimBlu30 translates the chemical changes into a visual change from yellow to blue. The borate–redox dye-based humidity sensor was prepared, and then Fourier transform infrared spectroscopy, differential scanning calorimetry, and image analysis methods were used to characterize the chemical composition, optimize synthesis, and gain insight into the sensor reactivity. Test results indicated that this new sensing material can detect relative humidity in the range of 5–100% in an irreversible manner with good reproducibility and high accuracy. The sensor is a low-cost, highly sensitive, easy-to-use humidity indicator. More importantly, it can be easily packaged with products to monitor humidity levels in pharmaceutical and food packaging.

Date Created
2014-09-09
Agent

Numerical simulation of environmental flow over buildings for renewable energy application

153746-Thumbnail Image.png
Description
For the increasing concerns of influence on environment by fossil-electricity generation, application of renewable energy becomes one of the most focused issues in society. Based on the limitation on urban environment, wind turbines, which can be mounted on rooftop or

For the increasing concerns of influence on environment by fossil-electricity generation, application of renewable energy becomes one of the most focused issues in society. Based on the limitation on urban environment, wind turbines, which can be mounted on rooftop or between buildings, are regarded as a feasible way for wind energy generation. This study presents wind flow simulations in a large-scale environment with certain dimension buildings. Different inlet velocity boundary conditions are tested firstly, and the non-uniform inlet boundary condition shows better agreement with realistic situation. Turbulence intensity is set to be 10% for comparison consistency. The k-epsilon turbulence model is regarded as a better simulation for this certain condition. After that, three different structures, which include single building, pristine double building and modified circular gap double building systems, are tested in this environment condition. The result shows 18.8% velocity increasing on the top of single building system. Pristine double building systems are tested with 4 different gap distances, and building with 10 meters gap achieved the best velocity condition, which 32.8% velocity increasing and 11.8% improvement comparing to single building system, respectively. But the location of maximum velocity moves to the gap and the maximum velocity on the rooftop of double building system is approximately 5.1% lower than single building system. Based on previous study, modified circular gap double building system is created with 10 meters gap. Comparing result with single building system, modified circular gap system achieves higher improvement for wind flow, whose improvement of velocity increasing in the gap and on the rooftop of building are 47.1% and 3.0%, respectively. As a result, the modified circular gap double building can be regarded as a high efficiency system of environmental wind flow over buildings for renewable energy system.
Date Created
2015
Agent

Evaluation of vapor intrusion pathway assessment through long-term monitoring studies

153684-Thumbnail Image.png
Description
Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is understood about the characteristics of that variability and how it

Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is understood about the characteristics of that variability and how it influences pathway assessment decision-making. This research included the first-ever collection of a long-term high-frequency indoor air data set at a house with VI impacts overlying a dilute chlorinated solvent groundwater plume. It also included periodic synoptic snapshots of groundwater and soil gas data and high-frequency monitoring of building conditions and environmental factors. Indoor air trichloroethylene (TCE) concentrations varied over three orders-of-magnitude under natural conditions, with the highest daily VI activity during fall, winter, and spring months. These data were used to simulate outcomes from common sampling strategies, with the result being that there was a high probability (up to 100%) of false-negative decisions and poor characterization of long-term exposure. Temporal and spatial variability in subsurface data were shown to increase as the sampling point moves from source depth to ground surface, with variability of an order-of-magnitude or more for sub-slab soil gas. It was observed that indoor vapor sources can cause subsurface vapor clouds and that it can take days to weeks for soil gas plumes created by indoor sources to dissipate following indoor source removal. A long-term controlled pressure method (CPM) test was conducted to assess its utility as an alternate approach for VI pathway assessment. Indoor air concentrations were similar to maximum concentrations under natural conditions (9.3 μg/m3 average vs. 13 μg/m3 for 24 h TCE data) with little temporal variability. A key outcome was that there were no occurrences of false-negative results. Results suggest that CPM tests can produce worst-case exposure conditions at any time of the year. The results of these studies highlight the limitations of current VI pathway assessment approaches and demonstrate the need for robust alternate diagnostic tools, such as CPM, that lead to greater confidence in data interpretation and decision-making.
Date Created
2015
Agent

Synthesis and characterization of boronic-acid-containing metal organic frameworks

153181-Thumbnail Image.png
Description
We report the synthesis of novel boronic acid-containing metal-organic frameworks (MOFs), which was synthesized via solvothermal synthesis of cobalt nitride with 3,5-Dicarboxyphenylboronic acid (3,5-DCPBC). Powder X-ray diffraction and BET surface area analysis have been used to verify the successful synthesis

We report the synthesis of novel boronic acid-containing metal-organic frameworks (MOFs), which was synthesized via solvothermal synthesis of cobalt nitride with 3,5-Dicarboxyphenylboronic acid (3,5-DCPBC). Powder X-ray diffraction and BET surface area analysis have been used to verify the successful synthesis of this microporous material.

We have also made the attempts of using zinc nitride and copper nitride as metal sources to synthesize the boronic acid-containing MOFs. However, the attempts were not successful. The possible reason is the existence of copper and zinc ions catalyzed the decomposition of 3,5-Dicarboxyphenylboronic acid, forming isophthalic acid. The ended product has been proved to be isophthalic acid crystals by the single crystal X-ray diffraction. The effects of solvents, reaction temperature, and added bases were investigated. The addition of triethylamine has been shown to tremendously improve the sample crystallinity by facilitating ligand deprotonation
Date Created
2014
Agent

A novel control engineering approach to designing and optimizing adaptive sequential behavioral interventions

153096-Thumbnail Image.png
Description
Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health

Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for adaptive sequential behavioral interventions using dynamical systems modeling, control engineering principles and formal optimization methods. A novel gestational weight gain (GWG) intervention involving multiple intervention components and featuring a pre-defined, clinically relevant set of sequence rules serves as an excellent example of a sequential behavioral intervention; it is examined in detail in this research.

 

A comprehensive dynamical systems model for the GWG behavioral interventions is developed, which demonstrates how to integrate a mechanistic energy balance model with dynamical formulations of behavioral models, such as the Theory of Planned Behavior and self-regulation. Self-regulation is further improved with different advanced controller formulations. These model-based controller approaches enable the user to have significant flexibility in describing a participant's self-regulatory behavior through the tuning of controller adjustable parameters. The dynamic simulation model demonstrates proof of concept for how self-regulation and adaptive interventions influence GWG, how intra-individual and inter-individual variability play a critical role in determining intervention outcomes, and the evaluation of decision rules.

 

Furthermore, a novel intervention decision paradigm using Hybrid Model Predictive Control framework is developed to generate sequential decision policies in the closed-loop. Clinical considerations are systematically taken into account through a user-specified dosage sequence table corresponding to the sequence rules, constraints enforcing the adjustment of one input at a time, and a switching time strategy accounting for the difference in frequency between intervention decision points and sampling intervals. Simulation studies illustrate the potential usefulness of the intervention framework.

The final part of the dissertation presents a model scheduling strategy relying on gain-scheduling to address nonlinearities in the model, and a cascade filter design for dual-rate control system is introduced to address scenarios with variable sampling rates. These extensions are important for addressing real-life scenarios in the GWG intervention.
Date Created
2014
Agent