The Morphology and Biochemical Structure of Spider Egg Cases: Potential Arachnid- based Silk Nanosealants in Medicine

193634-Thumbnail Image.png
Description
The egg cases of spiders are commonly multilayered, complex structures that contain several silk fibers. This study uses optical and polarized microscopy, scanning electron microscopy, and infrared spectroscopy to compare the morphology and secondary protein structure of egg case silk

The egg cases of spiders are commonly multilayered, complex structures that contain several silk fibers. This study uses optical and polarized microscopy, scanning electron microscopy, and infrared spectroscopy to compare the morphology and secondary protein structure of egg case silk of two orb-web spider species (A. aurantia and A. trifascita), two cobweb species (L. hesperus and L. geometricus), and one nursery web species (D. okefinokensis). A common feature of all six spiders' egg cases was a more dense and rigid outer layer, which was typically comprised of both tubiliform and aciniform silk fibers, along with a less dense inner layer of pure tubiliform silk. Infrared spectroscopy revealed that tubiliform silk from all egg cases contain a significant proportion (30-50%) of beta-sheet nanocrystalline aligned regions that are embedded in an amorphous random coil matrix, which does not change appreciably with hydration. While the native as-spun aciniform silk fibers primarily incorporated into the outer shell layer of egg cases are observed to be dominated by alpha-helical and random coil secondary structures, where the alpha-helical component undergoes a partial hydration-induced conversion to beta-sheet. Akin to egg case silk’s biochemical structure, its potential uses encompass a wide variety of industries, especially medicine. Synthetic materials have served in roles where silk often caters best to with its high mechanical/chemical robustness and biocompatability while also ushering in novel treatment avenues. An arachnid-based film hybridized with a photothermal converter nanoparticle such as copper salt or silver nanoprisms, which serve to weld the suture to the dermal tissue, is a promising strategy in the goal of ever improving patient outcomes.These two studies in parallel, one of a fundamental focus and one of an applied outlook, seek to understand and exploit the properties of spider silk in order to advance our knowledge of this amazing material and harness its potential for a wide range of practical applications.
Date Created
2024
Agent

Hydrogel Facilitated Melanoma Cell-Macrophage Co-culture Tumor Microenvironments

189267-Thumbnail Image.png
Description
Cellular models have been the backbone of models for drug therapeutics, discovery, or diagnostics, and for modeling a tumor microenvironment to understand the proliferation, migration, invasion, dormancy, angiogenesis, Conventional two-dimensional (2D) cell culture models are used because of the cost-effectiveness

Cellular models have been the backbone of models for drug therapeutics, discovery, or diagnostics, and for modeling a tumor microenvironment to understand the proliferation, migration, invasion, dormancy, angiogenesis, Conventional two-dimensional (2D) cell culture models are used because of the cost-effectiveness compared to animal models. But these models fail to mimic the cellular phenotype of a three-dimensional (3D) microenvironment. As a result, it is important to develop a 3D model that predicts cellular behaviors and their interaction with neighboring cells and extracellular matrix (ECM) in a more realistic setting. Various 3D cell culture methods have been employed to generate spheroids, in vitro, but most of these platforms face drawbacks such as spheroid size heterogeneity, low yield, use of specialized instruments etc. The hydrogel platform mentioned here was able to solve all the previous problems and can create a novel 3D tumor microenvironment. This thesis is focused on developing an in-vitro 3D model which can modulate the tumor microenvironment consisting of cancer cells and macrophages and how the Amikagel platform modulated the macrophage phenotype is discussed in detail here. This platform can be an ideal platform for macrophage phenotype modulation.
Date Created
2023
Agent

Aminoglycosides-derived Lipopolymer Nanoparticles for Delivery of mRNA

187385-Thumbnail Image.png
Description
The use of mRNA for therapeutic purposes has gained significant attention due to its potential to treat a wide range of diseases, including cancer, infectious diseases, and genetic disorders. However, the efficient delivery of mRNA to target cells remains a

The use of mRNA for therapeutic purposes has gained significant attention due to its potential to treat a wide range of diseases, including cancer, infectious diseases, and genetic disorders. However, the efficient delivery of mRNA to target cells remains a major challenge, and delivery of mRNA faces major issues such as rapid degradation and poor cellular uptake. Aminoglycoside-derived lipopolymer nanoparticles (LPNs) have been shown as a promising platform for plasmid DNA (pDNA) delivery due to their stability, biocompatibility, and ability to encapsulate mRNA. The current study aims to develop and optimize LPNs formulation for the delivery of mRNA in aggressive cancer cells, using a combination of chemical synthesis, physicochemical characterization, and in vitro biological assays. From a small library of aminoglycoside-derived lipopolymers, the lead lipopolymers were screened for the efficient delivery of mRNA. The complexes were synthesized with different ratios of lipopolymers to mRNA. The appropriate binding ratios of lipopolymers and mRNA were determined by gel electrophoresis. The complexes were characterized using dynamic light scattering (DLS) and zeta potential. The transgene expression efficacy of polymers was evaluated using in vitro bioluminescence assay. The toxicity of LPNs and LPNs-mRNA complexes was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The current study comprehensively investigates the optimization of the LPNs-mRNA formulation for enhanced efficacy in transgene expression in human advanced-stage melanoma cell lines.
Date Created
2023
Agent

Review of Aminoglycosides use in Clinical and Laboratory Settings as an Antibiotic, Gene Delivery Vector, and a Wound Healing Stimulant

Description

Aminoglycosides contain a basic unit of an amino-modified glycoside (sugar) and have potent antibacterial properties used to treat a wide range of bacterial infections, including those that occur in the soft tissue, chest, urinary tract, and endocardial tissue.1, 2 With

Aminoglycosides contain a basic unit of an amino-modified glycoside (sugar) and have potent antibacterial properties used to treat a wide range of bacterial infections, including those that occur in the soft tissue, chest, urinary tract, and endocardial tissue.1, 2 With a broad spectrum of activity and convenient dosing schedule, Aminoglycoside helps to effectively fight off Gram-negative bacteria.1, 3 In 1944 an aminoglycoside called streptomycin entered clinical trials to test its effectiveness as an antibiotic.4 After several years other classes of aminoglycosides were discovered such as neomycin, gentamicin, kanamycin, and netilmicin.4 When introduced these antibiotics presented major clinical advancements in the treatment of Tuberculosis and other bacterial infections.3, 4 However their use in modern medicine has diminished due to their toxicity, required parenteral delivery, and the availability of alternative antibiotics.3, 5 The dose-dependent toxicity of aminoglycosides limits their use due to a narrow range of safe aminoglycoside plasma concentrations.3, 5 Exceeding this range in non-target tissues can lead to negative effects on the audio-vestibular apparatus and kidneys.3, 5, 6 In the 1980’s, clinicians began treating infections with antibiotics that were perceived as less toxic and providing broader antibacterial activity.7 This resulted in aminoglycosides being prescribed for more persistent infections that were resistant to other antibiotics.3 With the amount of antibiotic resistant bacteria increasing, many scientists have begun looking into methods for minimizing aminoglycoside toxicity and maximizing its antibacterial activity.3, 8 These methods include encapsulation and polymer conjugation.9, 10 By encapsulating aminoglycosides in liposomes or other vesicles scientists aim to increase its concentration in infected tissues while decreasing nephro- and ototoxicity.9 With conjugated polymers scientists have created polymer complexes containing aminoglycosides and other compounds such as dopamine.11 The goal of these polymers is to limit toxicity by slowing antibiotic release and increasing efficacy of the antibiotic through targeted delivery and toxicity of other compounds.9, 10, 11 Other than its use in treating infections, aminoglycosides are gaining attention as an excellent vehicle for gene delivery.12 In this application aminoglycosides are used to correct a genetic defect by introducing a normal copy of the gene into affected cells.12,13 Currently scientists are assessing aminoglycosides for gene therapy in the treatment of cancer and various other diseases.12, 14 This review will focus on the diverse customizability of aminoglycosides in treating infections and as vehicles for gene therapy.

Date Created
2023-05
Agent

Systematic Pathology of Laser Sealing Augmented by Histamine Pathway Modulators

171604-Thumbnail Image.png
Description
Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the

Skin wounds can be caused by traumatic lacerations or incisions which disrupt the structural and functional integrity of the skin. Wound closure and primary intention treatment of the wound as soon as possible is crucial to avoid or minimize the risk of infection that can result in a compromised healing rate or advanced functional intricacy. The gold standard treatment for skin wound healing is suturing. Light-activated tissue sealing is an appealing alternative to sutures as it seals the wound edges minimizing the risk of infection and scarring, especially when utilized along with biodegradable polymeric biomaterials in the wound bed. Silk fibroins can be used as a biodegradable biomaterial that possesses properties supporting cell migration and proliferation in the tissue it interacts with. In addition, histamine treatment is shown to have extensive effects on cellular functions promoting wound healing. Here, the evaluation of Laser-activated Sealants (LASE) consisting of silk fibroin films induced with Indocyanine Green dye in a wound sealed with laser in the presence of Histamine receptor agonists H1R, H2R and H4R take place. The results were evaluated using Trans-epidermal Water Loss (TEWL), histological and analytical techniques where immune cell biomarkers Arginase-1, Ly6G, iNOS, Alpha-SMA, Proliferating Cell Nuclear Antigen (PCNA), and E-Cadherin were used to study the activity of specific cells such as macrophages, neutrophils, and myofibroblasts that aid in wound healing. PBS was used as a control for histamine receptor agonists. It was found that TEWL increased when treated with H1 receptor agonists while decreasing significantly in H2R and H4R-treated wounds. Arginase-1 activity improved, while it displayed an inverse relationship compared to iNOS. H4R agonist escalated Alpha-SMA cells, while others did not have any significant difference. Ly6G activity depleted in all histamine agonists significantly, while PCNA and E-Cadherin failed to show a positive or negative effect.
Date Created
2022
Agent

Engineering the Immune System using Metabolite-based Polymers for Cancer Immunotherapy

171409-Thumbnail Image.png
Description
Drug delivery has made a significant contribution to cancer immunotherapy and can have a tremendous impact on modulating immunometabolism, thereby affecting cancer outcomes. Notably, the science of delivery of cancer vaccines and immunotherapeutics, modulating immune cell functions has inspired development

Drug delivery has made a significant contribution to cancer immunotherapy and can have a tremendous impact on modulating immunometabolism, thereby affecting cancer outcomes. Notably, the science of delivery of cancer vaccines and immunotherapeutics, modulating immune cell functions has inspired development of several successful companies and clinical products. For example, cancer vaccines require activation of dendritic cells (DCs) and tumour associated Mɸs (TAMs) through modulation of their energy metabolism (e.g., glycolysis, glutaminolysis, Krebs cycle). Similar to activated immune cells, cancer cells also upregulate glucose and glutamine transporters for proliferation and survival. Cancer cells having accelerated energy metabolism, which has been exploited as a target for various therapeutic studies. In the first strategy, an immunometabolism strategy based on sustained release of succinate from biomaterials, which incorporate succinate in the backbone of the polymer was developed. This study demonstrates that succinate-based polymeric microparticles act as alarmins by modulating the immunometabolism of DCs and Mɸs to generate robust pro-inflammatory responses for melanoma treatment in immunocompetent young as well as aging mice. In the second strategy, a biomaterial-based strategy was developed to deliver metabolites one-step downstream of the node where the glycolytic pathway is inhibited, to specifically rescue DCs from glycolysis inhibition. The study successfully demonstrated for the first time that the glycolysis of DCs can be rescued both in vitro and in vivo using a biomaterial strategy of delivering metabolites downstream of the inhibitory node. Overall, it is believed that advanced drug delivery strategies will play an important role in marrying the fields of immunometabolism and immunotherapy to generate translatable anti-cancer treatments.
Date Created
2022
Agent

3D printed Bioactive Scaffolds for Tissue Repair and Drug Delivery

171360-Thumbnail Image.png
Description
Combining 3D bio-printing and drug delivery are promising techniques tofabricate scaffolds with well controlled and patient-specific structures for tissue engineering. In this study, silk derivatives of bioink were developed consisting of silk fibroin and gelatin then 3D printed into scaffolds. The scaffolds

Combining 3D bio-printing and drug delivery are promising techniques tofabricate scaffolds with well controlled and patient-specific structures for tissue engineering. In this study, silk derivatives of bioink were developed consisting of silk fibroin and gelatin then 3D printed into scaffolds. The scaffolds would be evaluated for small molecule release, cell growth, degradation, and morphology. Preparations and design of the scaffolds are major parts of engineering and tissue engineering. Scaffolds are designed to mimic extracellular matrix by providing structural support as well as promoting cell attachment and proliferation with minimum inflammation while degrading at a controlled rate. Scaffolds offers new potentials in medicine by aiding in the preparation of personalized and controlled release therapeutic systems.
Date Created
2022
Agent

Light-Activated Biomaterials for Soft Tissue Sealing and Wound Repair

168478-Thumbnail Image.png
Description
Sutures, staples, and tissue glues remain the primary means of tissue approximation and vessel ligation. Laser-activated tissue sealing is an alternative approach that conventionally employs light-absorbing chromophores and nanoparticles for converting near-infrared (NIR) laser to heat. The local increase in

Sutures, staples, and tissue glues remain the primary means of tissue approximation and vessel ligation. Laser-activated tissue sealing is an alternative approach that conventionally employs light-absorbing chromophores and nanoparticles for converting near-infrared (NIR) laser to heat. The local increase in temperature engenders interdigitation of sealant and tissue biomolecules, resulting in rapid tissue sealing. Light-activated sealants (LASE) were developed in which indocyanine green (ICG) dye is embedded within a biopolymer matrix (silk or chitosan) for incisional defect repair. Light-activated tissue-integrating sutures (LATIS) that synergize the benefits of conventional suturing and laser sealing were also fabricated and demonstrated higher efficacies for tissue biomechanical recovery and repair in a full-thickness, dorsal surgical incision model in mice compared to commercial sutures and cyanoacrylate skin glue. Localized delivery of modulators of tissue repair, including histamine and copper, from LASE and LATIS further improved healed skin strength. In addition to incisional wounds, histamine co-delivered with silk fibroin LASE films accelerated the closure of full thickness, splinted excisional wounds in immunocompetent BALB/c mice and genetically obese and diabetic db/db mice, resulting in faster closure than Tegaderm wound dressing. Immunohistochemistry analyses showed LASE-histamine treatment enhanced wound repair involving mechanisms of neoangiogenesis, myofibroblast activation, transient epidermal EMT, and also improve healed skin biomechanical strength which are hallmarks of improved healing outcomes. Benefit of temporal delivery was further investigated of a second therapeutic (growth factor nanoparticles) in modulating wound healing outcomes in both acute and diabetic wounds. The hypothesis of temporal delivery of second therapeutic around the ‘transition period’ in wounds further improved wound closure kinetics and biomechanical recovery of skin strength. Laser sealing and approximation, together with delivery of immunomodulatory mediators, can lead to faster healing and tissue repair, thus reducing wound dehiscence, preventing wounds moving towards chronicity and lowering incidence of surgical site infections, all of which can have significant impact in the clinic.
Date Created
2021
Agent

Light-Activated Sealants for Internal Organ Repair and Healing

166211-Thumbnail Image.png
Description

The current clinical gold standards for tissue sealing include sutures, staples, and glues, however several adverse effects limit their use. Sutures and staples inherently cause additional trauma to tissue surrounding the wound, and glues can be lacking in adhesion and

The current clinical gold standards for tissue sealing include sutures, staples, and glues, however several adverse effects limit their use. Sutures and staples inherently cause additional trauma to tissue surrounding the wound, and glues can be lacking in adhesion and are potentially inflammatory. All three also introduce risk of infection. Light-activated tissue sealing, particularly the use of near-infrared light, is an attractive alternative, as it localizes heat, thereby preventing thermal damage to the surrounding healthy tissue. Previous work identified a glutaraldehyde-crosslinked chitosan film as a lead sealant for gastrointestinal incision sealing, but in vivo testing resulted in tissue degradation in and around the wound. The suggested causes for this degradation were excess acetic acid, endotoxins in the chitosan, and thermal damage. A basic buffer wash protocol was developed to remove excess acid from the films following fabrication. UV-Vis spectroscopy demonstrated that following the wash, films had the same concentration of Indocyanine green as unwashed films, allowing them to absorb light at the same wavelength, therefore showing the wash did not affect the film’s function. However subsequent washes led to degradation of film mass of nearly 20%. Standard chitosan films had significantly greater mass gain (p = 0.028) and significantly less subsequent loss (p= 0.012) than endotoxin free chitosan-films after soaking in phosphate buffered saline for varying durations , while soaking duration had no effect (p = 0.332). Leak pressure testing of films prepared with varying numbers of buffer washes, laser temperature, and lasering time revealed no significant interaction between any of the 3 variables. As such, it was confirmed that proceeding with in vivo testing with the buffer wash, various lasering temperatures, and laser times would not affect the sealing performance of the films. Future investigation will involve characterization of additional materials that may be effective for sealing of internal wounds, as well as drug loading of agents that may hasten the healing process.

Date Created
2022-05
Agent

Structural and Functional Studies of Protein-Nanoparticle Complexes and their Interactions

161247-Thumbnail Image.png
Description
The list of applications of plasmonic nanoparticles in the fields of energy research, sensing, and diagnostics and therapeutics is continuously growing. Processes for the synthesis of the nanoparticles for such applications should incorporate provision to easily functionalize the particle formed

The list of applications of plasmonic nanoparticles in the fields of energy research, sensing, and diagnostics and therapeutics is continuously growing. Processes for the synthesis of the nanoparticles for such applications should incorporate provision to easily functionalize the particle formed and should ideally not use toxic reagents or create toxic by-products. The traditional methods of synthesizing nanoparticles generally are energy inefficient, requires stringent conditions such as high temperature, pressure or extreme pH and often produces toxic by-products. Although there exist a few solution-based methods to solve this problem, there is one avenue which has recently gained attention for nanoparticle synthesis: using biomolecules to facilitate nanomaterials synthesis. Using biomolecules for synthesis can provide a template to guide the nucleation process and helps to keep conditions biocompatible while also combining the step of functionalization of the nanoparticle with its synthesis through the biomolecule itself. The dissertation focuses on studying the bio-templated synthesis of two such noble metal nanoparticle which have biomedical applications: gold and platinum. In chapter 2, Gold Nanoparticles (GNP), with long-term stability, were synthesized using Maltose Binding Protein (MBP) as templating agent. The site of gold interaction on MBP was identified by X-ray crystallography. A novel gold binding peptide, AT1 (YPFGGSGGSGM), was designed based on the orientation of the residues in the gold binding site, identified through crystallography. This designed peptide was also shown to have stabilized and affected the growth rate of GNP formation, in similar manner to MBP. Further in chapter 3, a nanosensor was formulated using a variation of this GNP-MBP system, to detect and measure ionizing radiation dose for cancer radiation therapy. Upon exposure to therapeutic levels of ionizing radiation, the MBP‐based sensor system formed gold nanoparticles with a dose‐dependent color that could be used to predict the amount of delivered X‐ray dose. In chapter 4, a similar system of protein templated synthesis was introduced for platinum nanoparticle (PtNP). Here, GroEL, a large homo-tetradecamer chaperone from E.coli, was used as templating and stabilizing agent for reduction of K2PtCl4 ions to form PtNP. To understand how GroEL interacts with the PtNPs and thereby stabilizes them, single-particle cryo-electron microscopy technique was used to model the complex in solution. A 3.8-Å resolution 3D cryo-EM map of GroEL depicting the location of PtNP inside its central cylindrical cavity was obtained. Fitting a GroEL model to the map revealed Arginine-268 from two adjacent subunits of GroEL interacting with the PtNP surface. Finally in chapter 5, a solution to the potential issues of single particle data processing on protein nanoparticle complexes, specifically with 2D classification, was developed by creating masking algorithms.
Date Created
2020
Agent