Structure, Thermodynamic Stability, and Energetics of Guest-host Interactions in Hybrid Materials: Polymer Derived Ceramics (PDCs) and Metal Organic Frameworks (MOFs)

190762-Thumbnail Image.png
Description
This work systematically investigates structure-stability relations in various polymer derived ceramic (PDC) systems and metal organic frameworks (MOFs), both of which are hybrid materials. The investigation of silicon carbides (SiC) confirms thermodynamic stabilization of PDCs with increasing mixed bonding (Si

This work systematically investigates structure-stability relations in various polymer derived ceramic (PDC) systems and metal organic frameworks (MOFs), both of which are hybrid materials. The investigation of silicon carbides (SiC) confirms thermodynamic stabilization of PDCs with increasing mixed bonding (Si bonded to both C, O and/or N). The study of more complex silicon oxycarbide (SiOC) structures shows stabilization of SiOCs with increasing pyrolysis temperature (between 1200 and1500 oC), and points to dissimilarities in the stabilizing effect of different mixed bonding environments (SiO3C, SiO2C2, or SiOC3) and their relative amounts. Analyses of quaternary silicon oxycarbonitride (SiC(N)(O)) materials suggests increased stabilization with increasing N content, and superior stabilization due to SiNxC4-x compared to SiOxC4-x mixed bonds. Investigation of the energetics of metal filler (Nb, Hf, Ta) incorporation in SiOCs shows that choice of metal filler influences the composition, structural evolution, and thermodynamic stability in PDCs. Ta fillers can stabilize otherwise unstable SiO3C mixed bonds. Independent of metal incorporation or lack thereof, in SiOC systems, higher pyrolysis temperature (1200-1500 oC) forms more stable ceramics. The stabilizing effect of order/disorder of the free carbon phase is system-dependent. The work on (MOFs) highlights stabilization trends obtained from the investigation of zeolitic imidazolate frameworks (ZIFs) and boron imidazolate frameworks (BIFs) based on azolate linkers. Study of the energetics of metal (Co(II), Cu (II), and Zn (II) ) substitution in isostructural ZIFs shows that in MOFs the stabilizing effect of metal is dependent on both framework topology (diamondoid (dia) > sodalite (SOD)) and dimensionality (2D > 3D). Thermodynamic analyses of metal substitution (Ag(I), Cu(I), and Li (I)) in isostructural ii SOD and dia BIF systems confirm increase in density as a general descriptor for increased stabilization in MOFs. The study of energetics of guest-host interactions during CO2 incorporation in azolate frameworks (i.e., ZIF-8) shows strong dependence of energetics of adsorption on choice of linker and metal. Additionally, several energetically favorable reaction pathways for the formation of CO3-ZIF-8 have been identified. Both PDCs and MOFs show a complex energetic landscape, with identifiable system dependent and general structural descriptors for increased thermodynamic stabilization and tunability of the energetics of guest-host interactions.
Date Created
2023
Agent

Fundamental Investigations into the Properties and Performance of Advanced Materials

171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
Date Created
2022
Agent

Development of Hydrogel-based Porous Desiccants for Atmospheric Water Extraction

161962-Thumbnail Image.png
Description
Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical

Atmospheric water extraction (AWE) is an emerging technology to tackle water resource shortage challenges. One such approach to provide fresh water utilizes stimuli-responsive hydrogel-based desiccants to capture the moisture from the air and release it into the liquid form. Typical gel desiccants are composed of a hygroscopic agent for capturing and a hydrophilic gel matrix for storage. The desorption process can be completed by elevating the temperature above the upper or lower critical solution temperature point to initiate the volume phase transition of either thermo-responsive or photothermal types. This thesis focuses on investigating the structural effect of hydrogels on moisture uptake. Firstly, the main matrix of gel desiccant, poly(N-isopropylacrylamide) hydrogel, was optimized via tuning synthesis temperature and initial monomer concentration. Secondly, a series of hydrogel-based desiccants consisting of a hygroscopic material, vinyl imidazole, and optimized poly(N-isopropylacrylamide) gel matrix were synthesized with different network structures. The moisture uptake result showed that the gel desiccant with an interpenetrating polymeric network (IPN) resulted in the best-performing moisture capturing. The gel desiccant with the best performance will be used as a primary structural unit to evaluate the feasibility of developing a light-responsive gel desiccant to materialize light-trigger moisture desorption for AWE technology in the future.
Date Created
2021
Agent

Utilization of Computational Techniques in the Development of Functional Materials

161871-Thumbnail Image.png
Description
Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific

Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific applications. Computational modeling proves to be a crucial methodology in the design and optimization of such materials. This dissertation encompasses the utilization of molecular dynamics simulations and quantum calculations in two fields of functional materials: electrolytes and semiconductors. Molecular dynamics (MD) simulations were performed on ionic liquid-based electrolyte systems to identify molecular interactions, structural changes, and transport properties that are often reflected in experimental results. The simulations aid in the development process of the electrolyte systems in terms of concentrations of the constituents and can be invoked as a complementary or predictive tool to laboratory experiments. The theme of this study stretches further to include computational studies of the reactivity of atomic layer deposition (ALD) precursors. Selected aminosilane-based precursors were chosen to undergo density functional theory (DFT) calculations to determine surface reactivity and viability in an industrial setting. The calculations were expanded to include the testing of a semi-empirical tight binding program to predict growth per cycle and precursor reactivity with a high surface coverage model. Overall, the implementation of computational methodologies and techniques within these applications improves materials design and process efficiency while streamlining the development of new functional materials.
Date Created
2021
Agent

Self-Sensing Polymer Composites for Precursor Damage Detection via Mechanochemistry

161823-Thumbnail Image.png
Description
While understanding of failure mechanisms for polymeric composites have improved vastly over recent decades, the ability to successfully monitor early failure and subsequent prevention has come of much interest in recent years. One such method to detect these failures involves

While understanding of failure mechanisms for polymeric composites have improved vastly over recent decades, the ability to successfully monitor early failure and subsequent prevention has come of much interest in recent years. One such method to detect these failures involves the use of mechanochemistry, a field of chemistry in which chemical reactions are initiated by deforming highly-strained bonds present in certain moieties. Mechanochemistry is utilized in polymeric composites as a means of stress-sensing, utilizing weak and force-responsive chemical bonds to activate signals when embedded in a composite material. These signals can then be detected to determine the amount of stress applied to a composite and subsequent potential damage that has occurred due to the stress. Among mechanophores, the cinnamoyl moiety is capable of stress response through fluorescent signal under mechanical load. The cinnamoyl group is fluorescent in its initial state and capable of undergoing photocycloaddition in the presence of ultraviolet (UV) light, followed by subsequent reversion when under mechanical load. Signal generation before the yield point of the material provides a form of damage precursor detection.This dissertation explores the implementation of mechanophores in novel approaches to overcome some of the many challenges within the mechanochemistry field. First, new methods of mechanophore detection were developed through utilization of Fourier transform infrared (FTIR) spectroscopy signals and in-situ stress sensing. Developing an in-situ testing method provided a two-fold advantage of higher resolution and more time efficiency over current methods involving image analysis with a fluorescent microscope. Second, bonding mechanophores covalently into the backbone of an epoxy matrix mitigated property loss due to mechanophore incorporation. This approach was accomplished through functionalizing either the resin or hardener component of the matrix. Finally, surface functionalization of fibers was performed and allowed for unaltered fabrication procedures of composite layups as well as provided increased adhesion at the fiber-matrix interphase. The developed materials could enable a simple, non-invasive, and non-detrimental structural health monitoring approach.
Date Created
2021
Agent

Micro- and Macro-Scale Characterization of Fatigue Damage Behavior in Metallic Materials Under Constant and Variable Amplitude Multiaxial Loading

161310-Thumbnail Image.png
Description
Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical

Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical applications including aircraft, rotorcraft, and wind turbines. Any accidental failure of these structures during their service life can lead to catastrophic damage to life, property, and environment. All fatigue failure begins with the nucleation of a small crack, followed by crack growth, and ultimately the occurrence of final failure; however, the mechanisms governing the crack nucleation and the crack propagation behavior depend on the nature of fatigue loading and microstructure of the material. In general, ductile materials witness multiple nucleation sites leading to its failure; however, high strength material fails from the nucleation of a single dominant crack. Crack propagation, on the other hand, is governed by various competing mechanisms, which can act either ahead of the crack tip or in the wake region of the crack. Depending upon the magnitude of load, overload/underload, mode-mixity, and microstructure, dominant governing mechanisms may include: crack tip blunting; crack deflection, branching and secondary cracking; strain hardening; residual compressive stresses; plasticity-induced closure, etc. Therefore, it is essential to investigate the mechanisms governing fatigue failure of structural components under such complex multiaxial loading conditions in order to provide a reliable estimation of useful life. The research presented in this dissertation provides the foundation for a comprehensive understanding of fatigue damage in AA 7075 subjected to a range of loading conditions. A series of fatigue tests were conducted on specially designed specimens under different forms of multiaxial loading, which was followed by fracture-surface analysis in order to identify the governing micromechanisms and correlate them with macroscopic fatigue damage behavior. An empirical model was also developed to predict the crack growth rate trend under mode II overloads in an otherwise constant amplitude biaxial loading. The model parameters were calculated using the shape and the size of the plastic zone ahead of the crack tip, and the degree of material hardening within the overload plastic zone. The data obtained from the model showed a good correlation with the experimental values for crack growth rate in the transient region.
Date Created
2021
Agent

Electrospun Pretreatment Membranes

158569-Thumbnail Image.png
Description
Managing water resources has become one of the most pressing concerns of scientists both in academia and industry. The reverse osmosis (RO) water treatment process is a well-researched technology among the pressure driven processes to produce potable water. RO is

Managing water resources has become one of the most pressing concerns of scientists both in academia and industry. The reverse osmosis (RO) water treatment process is a well-researched technology among the pressure driven processes to produce potable water. RO is an energy intensive process and often RO membranes are susceptible to fouling and scaling that drives up operational cost and hinder the efficiency. To increase the performance of RO membranes the feed water is pretreated to remove pollutants before desalination. This work aims to fabricate pretreatment membranes to prevent the effects of fouling and scaling by introducing hydrophilic character to membrane. This work explores electrospinning, a cost-effective and scalable technique, to blend two polymers into a nonwoven membrane comprised of fibers ~100 nm - 10 µm in diameter.

A rotary drum collector holding the mat was used to simultaneously collect the electrospun hydrophobic poly(vinyl chloride) (PVC) and hydrophilic poly(vinyl alcohol) (PVA) fibers from two separate solutions. The hydrophilicity of the resulting membrane was tuned by controlling the relative deposition rate of PVA onto the co-spun mat. Fiber diameter and morphologies were characterized by scanning electron microscopy, and Fourier-transform infrared spectroscopy and Confocal fluorescence microscopy further confirmed the presence of both polymers. Moreover, a rigorous analysis to map the PVA/PVC concentration was established to accurately report the relative concentrations of the two polymers on the co-spun mat. After electrospinning, the PVA in the co-spun mats were cross-linked with poly(ethylene glycol) diacid to impart mechanical strength and tune the porosity.

EDS analysis revealed inconsistencies in the mass deposition of both polymers suggesting an improvement in the current experimental design to establish a meaningful relationship between PVA concentration and hydrophilicity. However, tensile test revealed that co-spun mats with high mass flow ratios of PVA possessed high mechanical strength showing a significant improvement in the Young’s Modulus. Furthermore, the co-spun mats were challenged with filtration experiments expecting a positive correlation of flux with PVA concentration. But it was found that with increased concentration, crosslinked PVA constricted PVC fibers minimizing the pores causing a lower flux and a dense membrane structure suitable for filtration.
Date Created
2020
Agent

Computational Study of Ionic Liquids for Low Temperature MET Sensors

131642-Thumbnail Image.png
Description
Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent

Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries, fuel cells, and supercapacitors. Due to their multiple advantages, the use of ionic liquids on Earth has been widely studied; however, further research must be done before their implementation in space. The extreme temperatures encountered during space travel and extra-terrestrial deployment have the potential to greatly affect the liquid electrolyte system. Examples of low temperature planetary bodies are the permanently shadowed sections of the moon or icy surfaces of Jupiter’s moons. Recent studies have explored the limits of glass transition temperatures for ionic liquid systems. The project is centered around the development of an ionic liquid system for a molecular electronic transducer seismometer that would be deployed on the low temperature system of Europa. For this project, molecular dynamics simulations used input intermolecular and intramolecular parameters that then simulated molecular interactions. Molecular dynamics simulations are based around the statistical mechanics of chemistry and help calculate equilibrium properties that are not easily calculated by hand. These simulations will give insight into what interactions are significant inside a ionic liquid solution. The simulations aim to create an understanding how ionic liquid electrolyte systems function at a molecular level. With this knowledge one can tune their system and its contents to adapt the systems properties to fit all environments the seismometers will experience.
Date Created
2020-05
Agent

Six Sigma in the Manufacturing Industry

131909-Thumbnail Image.png
Description
Evidence of Six Sigma principles dates back as far as the 1800s when normal distributions were first being introduced by Friedrich Gauss. Since then, Six Sigma has evolved and been documented into the Define, Measure, Analyze, Improve, and Control (DMAIC)

Evidence of Six Sigma principles dates back as far as the 1800s when normal distributions were first being introduced by Friedrich Gauss. Since then, Six Sigma has evolved and been documented into the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology that is used today. Each stage in the DMAIC methodology serves a unique purpose, and various tools have been developed to accomplish each stage’s goal. The manufacturing industry has developed its own more specified set of methods and tools that have been coined as Lean Six Sigma. The more notable Lean Six Sigma principles are TIMWOOD, SMED, and 5S.

As a case study, DMAIC methodology was used at a company that encourages Six Sigma in all its departments—Niagara Bottling. Ultimately, the company was able to cut its financial losses in fines from customers by over 15% in just a 12-week span by utilizing Six Sigma. In this, the importance of instilling an entire culture of Six Sigma is exemplified. When only a handful of team members are on board with the problem-solving mindset, it is significantly more difficult to see substantial improvements.
Date Created
2020-05
Agent

Forward Osmosis Desalination Using Thermoresponsive Hydrogels as Draw Agents; An Experimental Study

157445-Thumbnail Image.png
Description
Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower

Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for membrane-based processes such as using NIPAM as a draw agent for forward osmosis (FO) desalination. The low LCST temperature of NIPAM ensures that fresh water can be recovered, at a modest energy cost as compared to other thermally based desalination processes which require water recovery at higher temperatures. This work studies by experimentation, key process parameters involved in desalination by FO using NIPAM and a copolymer of NIPAM and Sodium Acrylate (NIPAM-SA). It encompasses synthesis of the hydrogels, development of experiments to effectively characterize synthesized products, and the measuring of FO performance for the individual hydrogels. FO performance was measured using single layers of NIPAM and NIPAM-SA respectively. The values of permeation flux obtained were compared to relevant published literature and it was found to be within reasonable range. Furthermore, a conceptual design for future large-scale implementation of this technology is proposed. It is proposed that perhaps more effort should focus on physical processes that have the ability to increase the low permeation flux of hydrogel driven FO desalination systems, rather than development of novel classes of hydrogels
Date Created
2019
Agent