Investigation on fatigue behavior of alloys by various approaches

156712-Thumbnail Image.png
Description
Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior

Fatigue is a degradation process of materials that would lead to failure when materials are subjected to cyclic loadings. During past centuries, various of approaches have been proposed and utilized to help researchers understand the underlying theories of fatigue behavior of materials, as well as design engineering structures so that catastrophic disasters that arise from fatigue failure could be avoided. The stress-life approach is the most classical way that academia applies to analyze fatigue data, which correlates the fatigue lifetime with stress amplitudes during cyclic loadings. Fracture mechanics approach is another well-established way, by which people regard the cyclic stress intensity factor as the driving force during fatigue crack nucleation and propagation, and numerous models (such as the well-known Paris’ law) are developed by researchers.

The significant drawback of currently widely-used fatigue analysis approaches, nevertheless, is that they are all cycle-based, limiting researchers from digging into sub-cycle regime and acquiring real-time fatigue behavior data. The missing of such data further impedes academia from validating hypotheses that are related to real-time observations of fatigue crack nucleation and growth, thus the existence of various phenomena, such as crack closure, remains controversial.

In this thesis, both classical stress-life approach and fracture-mechanics-based approach are utilized to study the fatigue behavior of alloys. Distinctive material characterization instruments are harnessed to help collect and interpret key data during fatigue crack growth. Specifically, an investigation on the sub-cycle fatigue crack growth behavior is enabled by in-situ SEM mechanical testing, and a non-uniform growth mechanism within one loading cycle is confirmed by direct observation as well as image interpretation. Predictions based on proposed experimental procedure and observations show good match with cycle-based data from references, which indicates the credibility of proposed methodology and model, as well as their capability of being applied to a wide range of materials.
Date Created
2018
Agent

Characterization of thermo-mechanical damage in tin and sintered nano-silver solders

156466-Thumbnail Image.png
Description
Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage

Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder.

Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size.

High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed.
Date Created
2018
Agent

Modeling Complex Material Systems Using Stochastic Reconstruction and Lattice Particle Simulation

156283-Thumbnail Image.png
Description
In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1,

In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review is made about these three material systems. In Chapter 2, detailed discussion of the statistical morphological descriptors and a stochastic optimization approach for microstructure reconstruction is presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex heterogeneous materials is introduced. In Chapter 4, a new class of hyperuniform heterogeneous material with superior mechanical properties is investigated. In Chapter 5, a bio-material system, i.e., cellularized collagen gel is modeled using correlation functions and stochastic reconstruction to study the collective dynamic behavior of the embed tumor cells. In chapter 6, LMPA soft robotic system is generated by generalizing the correlation functions and the rigidity tunability of this smart composite is discussed. In Chapter 7, a future work plan is presented.
Date Created
2018
Agent

Metal ion detection by luminescent metal organic frameworks

156176-Thumbnail Image.png
Description
Metal Organic Frameworks(MOFs) have been used in various applications, including

sensors. The unique crystalline structure of MOFs in addition to controllability of

their pore size and their intake selectivity makes them a promising method of detection.

Detection of metal ions in water using

Metal Organic Frameworks(MOFs) have been used in various applications, including

sensors. The unique crystalline structure of MOFs in addition to controllability of

their pore size and their intake selectivity makes them a promising method of detection.

Detection of metal ions in water using a binary mixture of luminescent MOFs

has been reported. 3 MOFs(ZrPDA, UiO-66 and UiO-66-NH2) as detectors and 4

metal ions(Pb2+, Ni2+, Ba2+ and Cu2+) as the target species were chosen based on

cost, water stability, application and end goals.

It is possible to detect metal ions such as Pb2+ at concentrations at low as 0.005

molar using MOFs. Also, based on the luminescence responses, a method of distinguishing

between similar metal ions has been proposed. It is shown that using a

mixture of MOFs with dierent reaction to metal ions can lead to unique and specic

3D luminescence maps, which can be used to identify the present metal ions in water

and their amount.

In addition to the response of a single MOF to addition of a single metal ion,

luminescence response of ZrPDA + UiO-66 mixture to increasing concentration of

each of 4 metal ions was studied, and summarized. A new peak is observed in the

mixture, that did not exist before, and it is proposed that this peak requires metal

ions to activate
Date Created
2018
Agent

Modeling, characterizing and reconstructing mesoscale microstructural evolution in particulate processing and solid-state sintering

156172-Thumbnail Image.png
Description
In material science, microstructure plays a key role in determining properties, which further determine utility of the material. However, effectively measuring microstructure evolution in real time remains an challenge. To date, a wide range of advanced experimental techniques have been

In material science, microstructure plays a key role in determining properties, which further determine utility of the material. However, effectively measuring microstructure evolution in real time remains an challenge. To date, a wide range of advanced experimental techniques have been developed and applied to characterize material microstructure and structural evolution on different length and time scales. Most of these methods can only resolve 2D structural features within a narrow range of length scale and for a single or a series of snapshots. The currently available 3D microstructure characterization techniques are usually destructive and require slicing and polishing the samples each time a picture is taken. Simulation methods, on the other hand, are cheap, sample-free and versatile without the special necessity of taking care of the physical limitations, such as extreme temperature or pressure, which are prominent

issues for experimental methods. Yet the majority of simulation methods are limited to specific circumstances, for example, first principle computation can only handle several thousands of atoms, molecular dynamics can only efficiently simulate a few seconds of evolution of a system with several millions particles, and finite element method can only be used in continuous medium, etc. Such limitations make these individual methods far from satisfaction to simulate macroscopic processes that a material sample undergoes up to experimental level accuracy. Therefore, it is highly desirable to develop a framework that integrate different simulation schemes from various scales

to model complicated microstructure evolution and corresponding properties. Guided by such an objective, we have made our efforts towards incorporating a collection of simulation methods, including finite element method (FEM), cellular automata (CA), kinetic Monte Carlo (kMC), stochastic reconstruction method, Discrete Element Method (DEM), etc, to generate an integrated computational material engineering platform (ICMEP), which could enable us to effectively model microstructure evolution and use the simulated microstructure to do subsequent performance analysis. In this thesis, we will introduce some cases of building coupled modeling schemes and present

the preliminary results in solid-state sintering. For example, we use coupled DEM and kinetic Monte Carlo method to simulate solid state sintering, and use coupled FEM and cellular automata method to model microstrucutre evolution during selective laser sintering of titanium alloy. Current results indicate that joining models from different length and time scales is fruitful in terms of understanding and describing microstructure evolution of a macroscopic physical process from various perspectives.
Date Created
2018
Agent

Multiscale Modeling of Oxygen Impurity Effects on Macroscopic Deformation and Fatigue Behavior of Commercially Pure Titanium

156132-Thumbnail Image.png
Description
Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first

Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium is examined using generalized stacking fault energies (GSFE) computed by the first principles calculations. It is shown that oxygen can significantly increase the energy barrier to dislocation motion on most of the studied slip planes. Then the Peierls-Nabbaro model is utilized in conjunction with the GSFE to estimate the Peierls stress ratios for different slip systems. Using such information along with a set of tension and compression experiments, the parameters of a continuum scale crystal plasticity model, namely CRSS values, are calibrated. Effect of oxygen content on the macroscopic stress-strain response is further investigated through experiments on oxygen-boosted samples at room temperature. It is demonstrated that the crystal plasticity model can very well capture the effect of oxygen content on the global response of the samples. It is also revealed that oxygen promotes the slip activity on the pyramidal planes.

The effect of oxygen impurity on titanium is further investigated under high cycle fatigue loading. For that purpose, a two-step hierarchical crystal plasticity for fatigue predictions is presented. Fatigue indicator parameter is used as the main driving force in an energy-based crack nucleation model. To calculate the FIPs, high-resolution full-field crystal plasticity simulations are carried out using a spectral solver. A nucleation model is proposed and calibrated by the fatigue experimental data for notched titanium samples with different oxygen contents and under two load ratios. Overall, it is shown that the presented approach is capable of predicting the high cycle fatigue nucleation time. Moreover, qualitative predictions of microstructurally small crack growth rates are provided. The multi-scale methodology presented here can be extended to other material systems to facilitate a better understanding of the fundamental deformation mechanisms, and to effectively implement such knowledge in mesoscale-macroscale investigations.
Date Created
2018
Agent

Physics-Based Modeling of Material Behavior and Damage Initiation in Nanoengineered Composites

156115-Thumbnail Image.png
Description
Materials with unprecedented properties are necessary to make dramatic changes in current and future aerospace platforms. Hybrid materials and composites are increasingly being used in aircraft and spacecraft frames; however, future platforms will require an optimal design of novel materials

Materials with unprecedented properties are necessary to make dramatic changes in current and future aerospace platforms. Hybrid materials and composites are increasingly being used in aircraft and spacecraft frames; however, future platforms will require an optimal design of novel materials that enable operation in a variety of environments and produce known/predicted damage mechanisms. Nanocomposites and nanoengineered composites with CNTs have the potential to make significant improvements in strength, stiffness, fracture toughness, flame retardancy and resistance to corrosion. Therefore, these materials have generated tremendous scientific and technical interest over the past decade and various architectures are being explored for applications to light-weight airframe structures. However, the success of such materials with significantly improved performance metrics requires careful control of the parameters during synthesis and processing. Their implementation is also limited due to the lack of complete understanding of the effects the nanoparticles impart to the bulk properties of composites. It is common for computational methods to be applied to explain phenomena measured or observed experimentally. Frequently, a given phenomenon or material property is only considered to be fully understood when the associated physics has been identified through accompanying calculations or simulations.

The computationally and experimentally integrated research presented in this dissertation provides improved understanding of the mechanical behavior and response including damage and failure in CNT nanocomposites, enhancing confidence in their applications. The computations at the atomistic level helps to understand the underlying mechanochemistry and allow a systematic investigation of the complex CNT architectures and the material performance across a wide range of parameters. Simulation of the bond breakage phenomena and development of the interface to continuum scale damage captures the effects of applied loading and damage precursor and provides insight into the safety of nanoengineered composites under service loads. The validated modeling methodology is expected to be a step in the direction of computationally-assisted design and certification of novel materials, thus liberating the pace of their implementation in future applications.
Date Created
2018
Agent

In situ SEM Testing for Fatigue Crack Growth: Mechanical Investigation of Titanium

133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V,

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
Date Created
2018-05
Agent

Structure-property relationships in aluminum-copper alloys using Transmission X-ray Microscopy (TXM) and micromechanical testing

155916-Thumbnail Image.png
Description
Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer

Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven’t rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established.

The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To that effect, in situ tests were conducted at the synchrotron (Advanced Photon Source) using Transmission X-Ray Microscopy as well as in a scanning electron microscope (SEM) to study real-time damage evolution in such alloys. Findings of precipitate size-dependent transition in deformation behavior from these tests have inspired a novel resilient aluminum alloy design.
Date Created
2017
Agent

Squeezing Out Electricity: Computer-Aided Design and Optimization of Electrodes of Solid Oxide Fuel Cells

135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important ste

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
Date Created
2016-05
Agent