Creating, Validating, and Using Synthetic Power Flow Cases: A Statistical Approach to Power System Analysis

157058-Thumbnail Image.png
Description
Synthetic power system test cases offer a wealth of new data for research and development purposes, as well as an avenue through which new kinds of analyses and questions can be examined. This work provides both a methodology for creating

Synthetic power system test cases offer a wealth of new data for research and development purposes, as well as an avenue through which new kinds of analyses and questions can be examined. This work provides both a methodology for creating and validating synthetic test cases, as well as a few use-cases for how access to synthetic data enables otherwise impossible analysis.

First, the question of how synthetic cases may be generated in an automatic manner, and how synthetic samples should be validated to assess whether they are sufficiently ``real'' is considered. Transmission and distribution levels are treated separately, due to the different nature of the two systems. Distribution systems are constructed by sampling distributions observed in a dataset from the Netherlands. For transmission systems, only first-order statistics, such as generator limits or line ratings are sampled statistically. The task of constructing an optimal power flow case from the sample sets is left to an optimization problem built on top of the optimal power flow formulation.

Secondly, attention is turned to some examples where synthetic models are used to inform analysis and modeling tasks. Co-simulation of transmission and multiple distribution systems is considered, where distribution feeders are allowed to couple transmission substations. Next, a distribution power flow method is parametrized to better account for losses. Numerical values for the parametrization can be statistically supported thanks to the ability to generate thousands of feeders on command.
Date Created
2019
Agent

Security Analysis of Interdependent Critical Infrastructures: Power, Cyber and Gas

156827-Thumbnail Image.png
Description
Our daily life is becoming more and more reliant on services provided by the infrastructures

power, gas , communication networks. Ensuring the security of these

infrastructures is of utmost importance. This task becomes ever more challenging as

the inter-dependence among these infrastructures grows

Our daily life is becoming more and more reliant on services provided by the infrastructures

power, gas , communication networks. Ensuring the security of these

infrastructures is of utmost importance. This task becomes ever more challenging as

the inter-dependence among these infrastructures grows and a security breach in one

infrastructure can spill over to the others. The implication is that the security practices/

analysis recommended for these infrastructures should be done in coordination.

This thesis, focusing on the power grid, explores strategies to secure the system that

look into the coupling of the power grid to the cyber infrastructure, used to manage

and control it, and to the gas grid, that supplies an increasing amount of reserves to

overcome contingencies.

The first part (Part I) of the thesis, including chapters 2 through 4, focuses on

the coupling of the power and the cyber infrastructure that is used for its control and

operations. The goal is to detect malicious attacks gaining information about the

operation of the power grid to later attack the system. In chapter 2, we propose a

hierarchical architecture that correlates the analysis of high resolution Micro-Phasor

Measurement Unit (microPMU) data and traffic analysis on the Supervisory Control

and Data Acquisition (SCADA) packets, to infer the security status of the grid and

detect the presence of possible intruders. An essential part of this architecture is

tied to the analysis on the microPMU data. In chapter 3 we establish a set of anomaly

detection rules on microPMU data that

flag "abnormal behavior". A placement strategy

of microPMU sensors is also proposed to maximize the sensitivity in detecting anomalies.

In chapter 4, we focus on developing rules that can localize the source of an events

using microPMU to further check whether a cyber attack is causing the anomaly, by

correlating SCADA traffic with the microPMU data analysis results. The thread that

unies the data analysis in this chapter is the fact that decision are made without fully estimating the state of the system; on the contrary, decisions are made using

a set of physical measurements that falls short by orders of magnitude to meet the

needs for observability. More specifically, in the first part of this chapter (sections 4.1-

4.2), using microPMU data in the substation, methodologies for online identification of

the source Thevenin parameters are presented. This methodology is used to identify

reconnaissance activity on the normally-open switches in the substation, initiated

by attackers to gauge its controllability over the cyber network. The applications

of this methodology in monitoring the voltage stability of the grid is also discussed.

In the second part of this chapter (sections 4.3-4.5), we investigate the localization

of faults. Since the number of PMU sensors available to carry out the inference

is insufficient to ensure observability, the problem can be viewed as that of under-sampling

a "graph signal"; the analysis leads to a PMU placement strategy that can

achieve the highest resolution in localizing the fault, for a given number of sensors.

In both cases, the results of the analysis are leveraged in the detection of cyber-physical

attacks, where microPMU data and relevant SCADA network traffic information

are compared to determine if a network breach has affected the integrity of the system

information and/or operations.

In second part of this thesis (Part II), the security analysis considers the adequacy

and reliability of schedules for the gas and power network. The motivation for

scheduling jointly supply in gas and power networks is motivated by the increasing

reliance of power grids on natural gas generators (and, indirectly, on gas pipelines)

as providing critical reserves. Chapter 5 focuses on unveiling the challenges and

providing solution to this problem.
Date Created
2018
Agent

Enhanced Reserve Procurement Policies for Power Systems with Increasing Penetration Levels of Stochastic Resources

156196-Thumbnail Image.png
Description
The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model

The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model reserve requirements within the conventional security-constrained unit commitment (SCUC) models may not be satisfactory with increasing penetration levels of stochastic resources; such conventional models pro-cure reserves in accordance with deterministic criteria whose deliverability, in the event of an uncertain realization, is not guaranteed. Smart, well-designed reserve policies are needed to assist system operators in maintaining reliability at least cost.

Contemporary market models do not satisfy the minimum stipulated N-1 mandate for generator contingencies adequately. This research enhances the traditional market practices to handle generator contingencies more appropriately. In addition, this research employs stochastic optimization that leverages statistical information of an ensemble of uncertain scenarios and data analytics-based algorithms to design and develop cohesive reserve policies. The proposed approaches modify the classical SCUC problem to include reserve policies that aim to preemptively anticipate post-contingency congestion patterns and account for resource uncertainty, simultaneously. The hypothesis is to integrate data-mining, reserve requirement determination, and stochastic optimization in a holistic manner without compromising on efficiency, performance, and scalability. The enhanced reserve procurement policies use contingency-based response sets and post-contingency transmission constraints to appropriately predict the influence of recourse actions, i.e., nodal reserve deployment, on critical transmission elements.

This research improves the conventional deterministic models, including reserve scheduling decisions, and facilitates the transition to stochastic models by addressing the reserve allocation issue. The performance of the enhanced SCUC model is compared against con-temporary deterministic models and a stochastic unit commitment model. Numerical results are based on the IEEE 118-bus and the 2383-bus Polish test systems. Test results illustrate that the proposed reserve models consistently outperform the benchmark reserve policies by improving the market efficiency and enhancing the reliability of the market solution at reduced costs while maintaining scalability and market transparency. The proposed approaches require fewer ISO discretionary adjustments and can be employed by present-day solvers with minimal disruption to existing market procedures.
Date Created
2018
Agent

Unit commitment with uncertainty

155128-Thumbnail Image.png
Description
This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty.

In the first part of this dissertation, two-stage models are studied to solve the problem. Two solution methods are studied and improved: stochastic programming and robust optimization. A scenario-based progressive hedging decomposition algorithm is applied. Several new hedging mechanisms and parameter selections rules are proposed and tested. A data-driven uncertainty set is proposed to improve the performance of robust optimization.

In the second part of this dissertation, a framework to reduce the two-stage stochastic program to a single-stage deterministic formulation is proposed. Most computation of the proposed approach can be done by offline studies. With the assistance of offline analysis, simulation, and data mining, the unit commitment problems with uncertainty can be solved efficiently.

Finally, the impacts of uncertainty on energy market prices are studied. A new component of locational marginal price, a marginal security component, which is the weighted shadow prices of the proposed security constraints, is proposed to better represent energy prices.
Date Created
2016
Agent

Let wind rise harnessing bulk energy storage under increasing renewable penetration levels

155066-Thumbnail Image.png
Description
With growing concern regarding environmental issues and the need for a more sustainable grid, power systems have seen a fast expansion of renewable resources in the last decade. The uncertainty and variability of renewable resources has posed new challenges on

With growing concern regarding environmental issues and the need for a more sustainable grid, power systems have seen a fast expansion of renewable resources in the last decade. The uncertainty and variability of renewable resources has posed new challenges on system operators. Due to its energy-shifting and fast-ramping capabilities, energy storage (ES) has been considered as an attractive solution to alleviate the increased renewable uncertainty and variability.

In this dissertation, stochastic optimization is utilized to evaluate the benefit of bulk energy storage to facilitate the integration of high levels of renewable resources in transmission systems. A cost-benefit analysis is performed to study the cost-effectiveness of energy storage. A two-step approach is developed to analyze the effectiveness of using energy storage to provide ancillary services. Results show that as renewable penetrations increase, energy storage can effectively compensate for the variability and uncertainty in renewable energy and has increasing benefits to the system.

With increased renewable penetrations, enhanced dispatch models are needed to efficiently operate energy storage. As existing approaches do not fully utilize the flexibility of energy storage, two approaches are developed in this dissertation to improve the operational strategy of energy storage. The first approach is developed using stochastic programming techniques. A stochastic unit commitment (UC) is solved to obtain schedules for energy storage with different renewable scenarios. Operating policies are then constructed using the solutions from the stochastic UC to efficiently operate energy storage across multiple time periods. The second approach is a policy function approach. By incorporating an offline analysis stage prior to the actual operating stage, the patterns between the system operating conditions and the optimal actions for energy storage are identified using a data mining model. The obtained data mining model is then used in real-time to provide enhancement to a deterministic economic dispatch model and improve the utilization of energy storage. Results show that the policy function approach outperforms a traditional approach where a schedule determined and fixed at a prior look-ahead stage is used. The policy function approach is also shown to have minimal added computational difficulty to the real-time market.
Date Created
2016
Agent

Harnessing flexibility of the transmission grid to enhance reliability of the power system

154530-Thumbnail Image.png
Description
The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve

The standard optimal power flow (OPF) problem is an economic dispatch (ED) problem combined with transmission constraints, which are based on a static topology. However, topology control (TC) has been proposed in the past as a corrective mechanism to relieve overloads and voltage violations. Even though the benefits of TC are presented by several research works in the past, the computational complexity associated with TC has been a major deterrent to its implementation. The proposed work develops heuristics for TC and investigates its potential to improve the computational time for TC for various applications. The objective is to develop computationally light methods to harness the flexibility of the grid to derive maximum benefits to the system in terms of reliability. One of the goals of this research is to develop a tool that will be capable of providing TC actions in a minimal time-frame, which can be readily adopted by the industry for real-time corrective applications.

A DC based heuristic, i.e., a greedy algorithm, is developed and applied to improve the computational time for the TC problem while still maintaining the ability to find quality solutions. In the greedy algorithm, an expression is derived, which indicates the impact on the objective for a marginal change in the state of a transmission line. This expression is used to generate a priority list with potential candidate lines for switching, which may provide huge improvements to the system. The advantage of this method is that it is a fast heuristic as compared to using mixed integer programming (MIP) approach.

Alternatively, AC based heuristics are developed for TC problem and tested on actual data from PJM, ERCOT and TVA. AC based N-1 contingency analysis is performed to identify the contingencies that cause network violations. Simple proximity based heuristics are developed and the fast decoupled power flow is solved iteratively to identify the top five TC actions, which provide reduction in violations. Time domain simulations are performed to ensure that the TC actions do not cause system instability. Simulation results show significant reductions in violations in the system by the application of the TC heuristics.
Date Created
2016
Agent

Energy market transparency: analyzing the impacts of constraint relaxation and out-of-market correction practices in electric energy markets

154323-Thumbnail Image.png
Description
This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to

This work presents research on practices in the day-ahead electric energy market, including replication practices and reliability coordinators used by some market operators to demonstrate the impact these practices have on market outcomes. The practice of constraint relaxations similar to those an Independent System Operator (ISO) might perform in day-ahead market models is implemented. The benefits of these practices are well understood by the industry; however, the implications these practices have on market outcomes and system security have not been thoroughly investigated. By solving a day-ahead market model with and without select constraint relaxations and comparing the resulting market outcomes and possible effects on system security, the effect of these constraint relaxation practices is demonstrated.

Proposed market solutions are often infeasible because constraint relaxation practices and approximations that are incorporated into market models. Therefore, the dispatch solution must be corrected to ensure its feasibility. The practice of correcting the proposed dispatch solution after the market is solved is known as out-of-market corrections (OMCs), defined as any action an operator takes that modifies a proposed day-ahead dispatch solution to ensure operating and reliability requirements. The way in which OMCs affect market outcomes is illustrated through the use of different corrective procedures. The objective of the work presented is to demonstrate the implications of these industry practices and assess the impact these practices have on market outcomes.
Date Created
2016
Agent

Robust corrective topology control for system reliability and renewable integration

153603-Thumbnail Image.png
Description
Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past

Corrective transmission topology control schemes are an essential part of grid operations and are used to improve the reliability of the grid as well as the operational efficiency. However, topology control schemes are frequently established based on the operator's past knowledge of the system as well as other ad-hoc methods. This research presents robust corrective topology control, which is a transmission switching methodology used for system reliability as well as to facilitate renewable integration.

This research presents three topology control (corrective transmission switching) methodologies along with the detailed formulation of robust corrective switching. The robust model can be solved off-line to suggest switching actions that can be used in a dynamic security assessment tool in real-time. The proposed robust topology control algorithm can also generate multiple corrective switching actions for a particular contingency. The solution obtained from the robust topology control algorithm is guaranteed to be feasible for the entire uncertainty set, i.e., a range of system operating states.

Furthermore, this research extends the benefits of robust corrective topology control to renewable resource integration. In recent years, the penetration of renewable resources in electrical power systems has increased. These renewable resources add more complexities to power system operations, due to their intermittent nature. This research presents robust corrective topology control as a congestion management tool to manage power flows and the associated renewable uncertainty. The proposed day-ahead method determines the maximum uncertainty in renewable resources in terms of do-not-exceed limits combined with corrective topology control. The results obtained from the topology control algorithm are tested for system stability and AC feasibility.

The scalability of do-not-exceed limits problem, from a smaller test case to a realistic test case, is also addressed in this research. The do-not-exceed limit problem is simplified by proposing a zonal do-not-exceed limit formulation over a detailed nodal do-not-exceed limit formulation. The simulation results show that the zonal approach is capable of addressing scalability of the do-not-exceed limit problem for a realistic test case.
Date Created
2015
Agent

Deterministic scheduling for transmission-constrained power systems amid uncertainty

153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
Date Created
2015
Agent

Engineering the implementation of pumped hydro energy storage in the Arizona power grid

153184-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale

This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies.

For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated.

The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions.

One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.
Date Created
2014
Agent