Let wind rise harnessing bulk energy storage under increasing renewable penetration levels

155066-Thumbnail Image.png
Description
With growing concern regarding environmental issues and the need for a more sustainable grid, power systems have seen a fast expansion of renewable resources in the last decade. The uncertainty and variability of renewable resources has posed new challenges on

With growing concern regarding environmental issues and the need for a more sustainable grid, power systems have seen a fast expansion of renewable resources in the last decade. The uncertainty and variability of renewable resources has posed new challenges on system operators. Due to its energy-shifting and fast-ramping capabilities, energy storage (ES) has been considered as an attractive solution to alleviate the increased renewable uncertainty and variability.

In this dissertation, stochastic optimization is utilized to evaluate the benefit of bulk energy storage to facilitate the integration of high levels of renewable resources in transmission systems. A cost-benefit analysis is performed to study the cost-effectiveness of energy storage. A two-step approach is developed to analyze the effectiveness of using energy storage to provide ancillary services. Results show that as renewable penetrations increase, energy storage can effectively compensate for the variability and uncertainty in renewable energy and has increasing benefits to the system.

With increased renewable penetrations, enhanced dispatch models are needed to efficiently operate energy storage. As existing approaches do not fully utilize the flexibility of energy storage, two approaches are developed in this dissertation to improve the operational strategy of energy storage. The first approach is developed using stochastic programming techniques. A stochastic unit commitment (UC) is solved to obtain schedules for energy storage with different renewable scenarios. Operating policies are then constructed using the solutions from the stochastic UC to efficiently operate energy storage across multiple time periods. The second approach is a policy function approach. By incorporating an offline analysis stage prior to the actual operating stage, the patterns between the system operating conditions and the optimal actions for energy storage are identified using a data mining model. The obtained data mining model is then used in real-time to provide enhancement to a deterministic economic dispatch model and improve the utilization of energy storage. Results show that the policy function approach outperforms a traditional approach where a schedule determined and fixed at a prior look-ahead stage is used. The policy function approach is also shown to have minimal added computational difficulty to the real-time market.
Date Created
2016
Agent

Moving to a smart distribution grid through automatic dynamic loading of substation distribution transformers

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
Date Created
2011
Agent