Unit commitment with uncertainty

155128-Thumbnail Image.png
Description
This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty.

In the first part of this dissertation, two-stage models are studied to solve the problem. Two solution methods are studied and improved: stochastic programming and robust optimization. A scenario-based progressive hedging decomposition algorithm is applied. Several new hedging mechanisms and parameter selections rules are proposed and tested. A data-driven uncertainty set is proposed to improve the performance of robust optimization.

In the second part of this dissertation, a framework to reduce the two-stage stochastic program to a single-stage deterministic formulation is proposed. Most computation of the proposed approach can be done by offline studies. With the assistance of offline analysis, simulation, and data mining, the unit commitment problems with uncertainty can be solved efficiently.

Finally, the impacts of uncertainty on energy market prices are studied. A new component of locational marginal price, a marginal security component, which is the weighted shadow prices of the proposed security constraints, is proposed to better represent energy prices.
Date Created
2016
Agent

Pricing schemes in electric energy markets

154355-Thumbnail Image.png
Description
Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal

Two thirds of the U.S. power systems are operated under market structures. A good market design should maximize social welfare and give market participants proper incentives to follow market solutions. Pricing schemes play very important roles in market design.

Locational marginal pricing scheme is the core pricing scheme in energy markets. Locational marginal prices are good pricing signals for dispatch marginal costs. However, the locational marginal prices alone are not incentive compatible since energy markets are non-convex markets. Locational marginal prices capture dispatch costs but fail to capture commitment costs such as startup cost, no-load cost, and shutdown cost. As a result, uplift payments are paid to generators in markets in order to provide incentives for generators to follow market solutions. The uplift payments distort pricing signals.

In this thesis, pricing schemes in electric energy markets are studied. In the first part, convex hull pricing scheme is studied and the pricing model is extended with network constraints. The subgradient algorithm is applied to solve the pricing model. In the second part, a stochastic dispatchable pricing model is proposed to better address the non-convexity and uncertainty issues in day-ahead energy markets. In the third part, an energy storage arbitrage model with the current locational marginal price scheme is studied. Numerical test cases are studied to show the arguments in this thesis.

The overall market and pricing scheme design is a very complex problem. This thesis gives a thorough overview of pricing schemes in day-ahead energy markets and addressed several key issues in the markets. New pricing schemes are proposed to improve market efficiency.
Date Created
2016
Agent