This thesis provides an analysis of the potential issues of using ChatGPT, as despite its benefits it does have its concerns that may deter societal progress. The thesis first provides insight into how ChatGPT generates text and provides insight into…
This thesis provides an analysis of the potential issues of using ChatGPT, as despite its benefits it does have its concerns that may deter societal progress. The thesis first provides insight into how ChatGPT generates text and provides insight into how the process of generating its outputs can lead to a variety of issues in the output such as hallucinated and biased output. After explaining how these issues occur, the thesis focuses on the impact of these issues in important industries such as medicine, education, and security, comparing them to popular open-source models such as Llama and Falcon.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Human civilization within the last two decades has largely transformed into an online one, with many of its associated activities taking place on computers and complex networked systems -- their analog and real-world equivalents having been rendered obsolete.These activities run…
Human civilization within the last two decades has largely transformed into an online one, with many of its associated activities taking place on computers and complex networked systems -- their analog and real-world equivalents having been rendered obsolete.These activities run the gamut from the ordinary and mundane, like ordering food, to complex and large-scale, such as those involving critical infrastructure or global trade and communications.
Unfortunately, the activities of human civilization also involve criminal, adversarial, and malicious ones with the result that they also now have their digital equivalents.
Ransomware, malware, and targeted cyberattacks are a fact of life today and are instigated not only by organized criminal gangs, but adversarial nation-states and organizations as well.
Needless to say, such actions result in disastrous and harmful real-world consequences. As the complexity and variety of software has evolved, so too has the ingenuity of attacks that exploit them; for example modern cyberattacks typically involve sequential exploitation of multiple software vulnerabilities.Compared to a decade ago, modern software stacks on personal computers, laptops, servers, mobile phones, and even Internet of Things (IoT) devices involve a dizzying array of interdependent programs and software libraries, with each of these components presenting attractive attack-surfaces for adversarial actors.
However, the responses to this still rely on paradigms that can neither react quickly enough nor scale to increasingly dynamic, ever-changing, and complex software environments.
Better approaches are therefore needed, that can assess system readiness and vulnerabilities, identify potential attack vectors and strategies (including ways to counter them), and proactively detect vulnerabilities in complex software before they can be exploited. In this dissertation, I first present a mathematical model and associated algorithms to identify attacker strategies for sequential cyberattacks based on attacker state, attributes and publicly-available vulnerability information.Second, I extend the model and design algorithms to help identify defensive courses of action against attacker strategies.
Finally, I present my work to enhance the ability of coverage-based fuzzers to identify software vulnerabilities by providing visibility into complex, internal program-states.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Historically, the predominant strategy for evaluating baseball pitchers has been through statistics created directly from the offensive production against the pitcher, such as ERA. Such statistics are inherently relative to the abilities and competition level of the opposing offense and…
Historically, the predominant strategy for evaluating baseball pitchers has been through statistics created directly from the offensive production against the pitcher, such as ERA. Such statistics are inherently relative to the abilities and competition level of the opposing offense and the field defense, which the pitcher has no control over, making it difficult to compare pitchers across leagues. In this paper, I use cutting edge pitch-tracking data to develop a pitch evaluation model that is intrinsic to the attributes of the pitches themselves, and not influenced directly by the outcomes of each individual pitch. I train four different classifiers to predict the probability of each pitch belonging to different subsets of outcomes, then multiply the probability of each outcome by that outcome’s average run value to arrive at an expected run value for the pitch. I compare the performance of each classifier to a baseline, examine the most impactful features, and compare the top pitchers identified by the model to those identified by a different baseball statistics resource, ultimately concluding that three of the four classification models are productive and that the overall intrinsic evaluation model accurately identifies the sports top performers.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
For my Thesis Project, I worked to operationalize an algorithmic trading application called Trading Dawg. Over the year, I was able to implement several analysis models, including accuracy, performance, volume, and hyperparameter analysis. With these improvements, we are in a…
For my Thesis Project, I worked to operationalize an algorithmic trading application called Trading Dawg. Over the year, I was able to implement several analysis models, including accuracy, performance, volume, and hyperparameter analysis. With these improvements, we are in a strong position to create valuable tools in the algorithmic trading space.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Malicious hackers utilize the World Wide Web to share knowledge. Previous work has demonstrated that information mined from online hacking communities can be used as precursors to cyber-attacks. In a threatening scenario, where security alert systems are facing high false…
Malicious hackers utilize the World Wide Web to share knowledge. Previous work has demonstrated that information mined from online hacking communities can be used as precursors to cyber-attacks. In a threatening scenario, where security alert systems are facing high false positive rates, understanding the people behind cyber incidents can help reduce the risk of attacks. However, the rapidly evolving nature of those communities leads to limitations still largely unexplored, such as: who are the skilled and influential individuals forming those groups, how they self-organize along the lines of technical expertise, how ideas propagate within them, and which internal patterns can signal imminent cyber offensives? In this dissertation, I have studied four key parts of this complex problem set. Initially, I leverage content, social network, and seniority analysis to mine key-hackers on darkweb forums, identifying skilled and influential individuals who are likely to succeed in their cybercriminal goals. Next, as hackers often use Web platforms to advertise and recruit collaborators, I analyze how social influence contributes to user engagement online. On social media, two time constraints are proposed to extend standard influence measures, which increases their correlation with adoption probability and consequently improves hashtag adoption prediction. On darkweb forums, the prediction of where and when hackers will post a message in the near future is accomplished by analyzing their recurrent interactions with other hackers. After that, I demonstrate how vendors of malware and malicious exploits organically form hidden organizations on darkweb marketplaces, obtaining significant consistency across the vendors’ communities extracted using the similarity of their products in different networks. Finally, I predict imminent cyber-attacks correlating malicious hacking activity on darkweb forums with real-world cyber incidents, evidencing how social indicators are crucial for the performance of the proposed model. This research is a hybrid of social network analysis (SNA), machine learning (ML), evolutionary computation (EC), and temporal logic (TL), presenting expressive contributions to empower cyber defense.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Social links form the backbone of human interactions, both in an offline and online world. Such interactions harbor network diffusion or in simpler words, information spreading in a population of connected individuals. With recent increase in user engagement in social…
Social links form the backbone of human interactions, both in an offline and online world. Such interactions harbor network diffusion or in simpler words, information spreading in a population of connected individuals. With recent increase in user engagement in social media platforms thus giving rise to networks of large scale, it has become imperative to understand the diffusion mechanisms by considering evolving instances of these network structures. Additionally, I claim that human connections fluctuate over time and attempt to study empirically grounded models of diffusion that embody these variations through evolving network structures. Patterns of interactions that are now stimulated by these fluctuating connections can be harnessed
towards predicting real world events. This dissertation attempts at analyzing
and then modeling such patterns of social network interactions. I propose how such
models could be used in advantage over traditional models of diffusion in various
predictions and simulations of real world events.
The specific three questions rooted in understanding social network interactions that have been addressed in this dissertation are: (1) can interactions captured through evolving diffusion networks indicate and predict the phase changes in a diffusion process? (2) can patterns and models of interactions in hacker forums be used in cyber-attack predictions in the real world? and (3) do varying patterns of social influence impact behavior adoption with different success ratios and could they be used to simulate rumor diffusion?
For the first question, I empirically analyze information cascades of Twitter and Flixster data and conclude that in evolving network structures characterizing diffusion, local network neighborhood surrounding a user is particularly a better indicator of the approaching phases. For the second question, I attempt to build an integrated approach utilizing unconventional signals from the "darkweb" forum discussions for predicting attacks on a target organization. The study finds that filtering out credible users and measuring network features surrounding them can be good indicators of an impending attack. For the third question, I develop an experimental framework in a controlled environment to understand how individuals respond to peer behavior in situations of sequential decision making and develop data-driven agent based models towards simulating rumor diffusion.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The recent proliferation of online platforms has not only revolutionized the way people communicate and acquire information but has also led to propagation of malicious information (e.g., online human trafficking, spread of misinformation, etc.). Propagation of such information occurs at…
The recent proliferation of online platforms has not only revolutionized the way people communicate and acquire information but has also led to propagation of malicious information (e.g., online human trafficking, spread of misinformation, etc.). Propagation of such information occurs at unprecedented scale that could ultimately pose imminent societal-significant threats to the public. To better understand the behavior and impact of the malicious actors and counter their activity, social media authorities need to deploy certain capabilities to reduce their threats. Due to the large volume of this data and limited manpower, the burden usually falls to automatic approaches to identify these malicious activities. However, this is a subtle task facing online platforms due to several challenges: (1) malicious users have strong incentives to disguise themselves as normal users (e.g., intentional misspellings, camouflaging, etc.), (2) malicious users are high likely to be key users in making harmful messages go viral and thus need to be detected at their early life span to stop their threats from reaching a vast audience, and (3) available data for training automatic approaches for detecting malicious users, are usually either highly imbalanced (i.e., higher number of normal users than malicious users) or comprise insufficient labeled data.
To address the above mentioned challenges, in this dissertation I investigate the propagation of online malicious information from two broad perspectives: (1) content posted by users and (2) information cascades formed by resharing mechanisms in social media. More specifically, first, non-parametric and semi-supervised learning algorithms are introduced to discern potential patterns of human trafficking activities that are of high interest to law enforcement. Second, a time-decay causality-based framework is introduced for early detection of “Pathogenic Social Media (PSM)” accounts (e.g., terrorist supporters). Third, due to the lack of sufficient annotated data for training PSM detection approaches, a semi-supervised causal framework is proposed that utilizes causal-related attributes from unlabeled instances to compensate for the lack of enough labeled data. Fourth, a feature-driven approach for PSM detection is introduced that leverages different sets of attributes from users’ causal activities, account-level and content-related information as well as those from URLs shared by users.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the…
Many existing applications of machine learning (ML) to cybersecurity are focused on detecting malicious activity already present in an enterprise. However, recent high-profile cyberattacks proved that certain threats could have been avoided. The speed of contemporary attacks along with the high costs of remediation incentivizes avoidance over response. Yet, avoidance implies the ability to predict - a notoriously difficult task due to high rates of false positives, difficulty in finding data that is indicative of future events, and the unexplainable results from machine learning algorithms.
In this dissertation, these challenges are addressed by presenting three artificial intelligence (AI) approaches to support prioritizing defense measures. The first two approaches leverage ML on cyberthreat intelligence data to predict if exploits are going to be used in the wild. The first work focuses on what data feeds are generated after vulnerability disclosures. The developed ML models outperform the current industry-standard method with F1 score more than doubled. Then, an approach to derive features about who generated the said data feeds is developed. The addition of these features increase recall by over 19% while maintaining precision. Finally, frequent itemset mining is combined with a variant of a probabilistic temporal logic framework to predict when attacks are likely to occur. In this approach, rules correlating malicious activity in the hacking community platforms with real-world cyberattacks are mined. They are then used in a deductive reasoning approach to generate predictions. The developed approach predicted unseen real-world attacks with an average increase in the value of F1 score by over 45%, compared to a baseline approach.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Live streaming has risen to significant popularity in the recent past and largely this live streaming is a feature of existing social networks like Facebook, Instagram, and Snapchat. However, there does exist at least one social network entirely devoted to…
Live streaming has risen to significant popularity in the recent past and largely this live streaming is a feature of existing social networks like Facebook, Instagram, and Snapchat. However, there does exist at least one social network entirely devoted to live streaming, and specifically the live streaming of video games, Twitch. This social network is unique for a number of reasons, not least because of its hyper-focus on live content and this uniqueness has challenges for social media researchers.
Despite this uniqueness, almost no scientific work has been performed on this public social network. Thus, it is unclear what user interaction features present on other social networks exist on Twitch. Investigating the interactions between users and identifying which, if any, of the common user behaviors on social network exist on Twitch is an important step in understanding how Twitch fits in to the social media ecosystem. For example, there are users that have large followings on Twitch and amass a large number of viewers, but do those users exert influence over the behavior of other user the way that popular users on Twitter do?
This task, however, will not be trivial. The same hyper-focus on live content that makes Twitch unique in the social network space invalidates many of the traditional approaches to social network analysis. Thus, new algorithms and techniques must be developed in order to tap this data source. In this thesis, a novel algorithm for finding games whose releases have made a significant impact on the network is described as well as a novel algorithm for detecting and identifying influential players of games. In addition, the Twitch network is described in detail along with the data that was collected in order to power the two previously described algorithms.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive. More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven…
In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive. More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied separately, there is little work on how data-driven approaches across all three forms relate and lend themselves to practical applications. Given an agent behavior and the percept sequence, how one can identify a specific outcome such as the likeliest explanation? To address real-world problems, it is vital to understand the different types of reasonings which can lead to better data-driven inference.
This dissertation has laid the groundwork for studying these relationships and applying them to three real-world problems. In criminal modeling, inductive and deductive reasonings are applied to early prediction of violent criminal gang members. To address this problem the features derived from the co-arrestee social network as well as geographical and temporal features are leveraged. Then, a data-driven variant of geospatial abductive inference is studied in missing person problem to locate the missing person. Finally, induction and abduction reasonings are studied for identifying pathogenic accounts of a cascade in social networks.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)