Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods…
Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods have arisen from the need for faster project delivery with early teams’ involvement, their benefits are not attained unless they are executed by the most qualified contracting firms for the job and administered following collaborative approaches. More holistically, integrated project management systems support meeting project guidelines while enforcing the social role played by individuals and teams in addressing challenges that influence their technical performance. Thus, the author was one of the 41 team members that developed an innovative IPM framework which is the Integrated Project/Program Management Maturity and Environment Total risk Rating known as IP2M METRR that helps them review their project team environment and levels of system maturity. Like the integrated delivery methods, an IPM framework is not expected to solve challenges on its own unless supported with guidance for practitioners to efficiently implement the framework. Thus, in this dissertation the author aims to address the challenges by studying the implementation of innovative methods for integrated delivery and integrated management in large government-owned engineering construction projects. The objective is to guide the implementation of (1) design-build (D-B) and construction manager-general contractor (CM-GC) methods in the contractor procurement phase and post-award contract administration phase; and (2) earned value management system (integrated project management application) through a paradigm shift in its assessment, using the IP2M METRR, and focusing on the novel sociotechnical aspect. The author studied data from 128 government-owned projects with total worth of about $46.7 U.S. billion, 11 experts, and 215 practitioners; and used mixed-methods research and industry engaging research techniques, including remote research charrettes which the author supported its development and testing and reported on in this dissertation.The contributions of this dissertation include: (1) identifying best practices for D-B and CM-GC contractor procurement, (2) developing D-B and CM-GC contract administration tool selection framework, (3) gauging lessons learned on IP2M METRR application, (4) identifying issues and recommendations in IPM application implementation, (5) validating IP2M METRR framework, and (6) developing and testing industry-engaging research approach.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental…
Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental impacts and pavements. Saving energy and mitigating the urban heat island (UHI) effect have been drawing the attention of researchers, governments, and industrial organizations. Pavements have been shown to play an important role in the UHI effect. Globally, about 90% of roadways are made of asphalt mixtures. The main objective of this research study involves the development and testing of an innovative aerogel-based product in the modification of asphalt mixtures to function as a material with unique thermal resistance properties, and potentially providing an urban cooling mechanism for the UHI. Other accomplishments included the development of test procedures to estimate the thermal conductivity of asphalt binders, the expansion-contraction of asphalt mixtures, and a computational tool to better understand the pavement’s thermal profile and stresses. Barriers related to the manufacturing and field implementation of the aerogel-based product were overcome. Unmodified and modified asphalt mixtures were manufactured at an asphalt plant to build pavement slabs. Thermocouples installed at top and bottom collected data daily. This data was valuable in understanding the temperature fluctuation of the pavement. Also, the mechanical properties of asphalt binders and mixtures with and without the novel product were evaluated in the laboratory. Fourier transform infrared (FTIR) and scanning electron microscope (SEM) analyses were also used to understand the interaction of the developed product with bituminous materials.
The modified pavements showed desirable results in reducing overall pavement temperatures and suppressing the temperature gradient, a key to minimize thermal cracking. The comprehensive laboratory tests showed favorable outcomes for pavement performance. The use of a pavement design software, and life cycle/cost assessment studies supported the use of this newly developed technology. Modified pavements would perform better than control in distresses related to permanent deformation and thermal cracking; they reduce tire/pavement noise, require less raw material usage during their life cycle, and have lower life cycle cost compared to conventional pavements.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A successful implementation of a Pavement Management System (PMS) allows agencies to make objective and informed decisions in maintaining their pavement assets effectively. Since 2008, the City of Phoenix, Arizona, has implemented PMS to maintain approximately 7,725 km (4,800 mi)…
A successful implementation of a Pavement Management System (PMS) allows agencies to make objective and informed decisions in maintaining their pavement assets effectively. Since 2008, the City of Phoenix, Arizona, has implemented PMS to maintain approximately 7,725 km (4,800 mi) of pavements. PMS is not a static system but a dynamic system requiring regular updates to reflect pavement performance and meet the agency's goals and budget. After upgrading to the Automated Road Analyzer (ARAN) 9000 in 2017, there is a need for Phoenix to evaluate its PMS. A low pavement condition index (PCI) for newly paved roads and the requirements for more than 35% of scheduled fog seal projects to be upgraded to heavier treatments observed, also motivated this research effort. The scope of this research was limited to the flexible pavement preservation program and the objectives are: (1) to evaluate the effectiveness of the existing City of Phoenix PMS and (2) to recommend improvements to the existing PMS.
This study evaluated technical and non-technical aspects of Phoenix’s preservation program. Since pavements in a structurally sound condition are good candidates for preservation treatment, a single pavement performance indicator, which allows agencies to be more flexible with their preservation treatments and minimize the pavement performance data collection and modeling efforts, was explored. A simple yet measurable and trackable pavement performance indicator, Surface Cracking Index (SCI), representing the overall pavement condition to perform PMS analysis for a preservation program, was proposed.
In addition, using a performance indicator, the International Roughness Index (IRI) to represent the ride quality or roughness, is a challenge for many local governments due to the nature of urban roadway related conditions such as stop and go driving conditions, abrupt lane change maneuvering, and lower prevailing speed. Therefore, a surface roughness indicator, Mean Profile Depth (MPD) measuring pavement surface macrotexture, was explored, and is proposed to be integrated in the PMS to optimize preservation treatments and recommendation strategies.
While Phoenix will directly benefit from this research study outcomes, any agency who uses PMS, or plans to use PMS for their preservation program, will also benefit from this research effort.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Ministry of Transport (MOT) in the Kingdom of Saudi Arabia (KSA) is considering adopting the Mechanistic-Empirical Pavement Design method with its associated software the AASHTOWare Pavement ME Design (PMED) for its flexible pavements in the near future. The AASHTOWare PMED…
Ministry of Transport (MOT) in the Kingdom of Saudi Arabia (KSA) is considering adopting the Mechanistic-Empirical Pavement Design method with its associated software the AASHTOWare Pavement ME Design (PMED) for its flexible pavements in the near future. The AASHTOWare PMED consists of distresses and international roughness index (IRI) prediction models that are nationally calibrated mainly using Long-Term Pavement Performance (LTPP) database in the United States. Implementing the AASHTOWare PMED in KSA requires two main tasks: 1. convert KSA data format to AASHTOWare PMED format, and 2. calibrate the distress and IRI models to KSA conditions. This study first prepared the KSA data to be accepted by AASHTOWare PMED and then calibrated the models to improve the pavement performance models predictions. After calibration, validation of these models was conducted to ensure accurate results with independent pavement sections. Goodness-of-fit statistics and null hypothesis test were used to assess each models’ prediction. Three flexible pavement models were successfully calibrated: asphalt concrete (AC) permanent deformation, top-down cracking, and IRI models. The results showed that the distress and IRI models with national (default) calibration are biased in predicating KSA pavements performance which required recalibration. Calibrating AC rutting, top-down cracking, and IRI models improved the prediction of KSA pavement performance. Most of the data used in this study were obtained from MOT. The AASHTOWare Pavement ME software (version 2.6.0) was used to complete the study.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement…
The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The construction industry generates tremendous amounts of data every day. Data can inform practitioners to increase their project performance as well as the quality of the resulting built environment. The data gathered from each stage has unique characteristics, and processing…
The construction industry generates tremendous amounts of data every day. Data can inform practitioners to increase their project performance as well as the quality of the resulting built environment. The data gathered from each stage has unique characteristics, and processing them to the appropriate information is critical. However, it is often difficult to measure the impact of the research across project phases (i.e., planning, design, construction, operation and maintenance, and end-of-life). The goal of this dissertation is to present how industry data can be used to make an impact on construction practices and test a suite of methods to measure the impact of construction research across project phases. The dissertation provides examples of impactful research studies for each project phase to demonstrate the collection and utilization of data generated from each stage and to assess the potential tangible impact on construction industry practices. The completed studies presented both quantitative and qualitative analyses. The first study focuses on the planning phase and provides a practice to improve frond end planning (FEP) implementation by developing the project definition rating index (PDRI) maturity and accuracy total rating system (MATRS). The second study uses earned value management system (EVMS) information from the design and construction phases to support reliable project control and management. The dissertation then provides a third study, this time focusing on the operations phase and comparing the impact of project delivery methods using the international roughness index (IRI). Lastly, the end-of-life or decommissioning phase is tackled through a study that gauges the monetary impact of the circular economy concept applied to reuse construction and demolition (C&D) waste. This dissertation measures the impact of the research according to the knowledge mobilization (KMb) theory, which illustrates the value of the work to the public and to practitioners.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
United States Air Force airfield PAVER pavement management system enterprise data was reviewed for 67 networks. The distress survey extents and severity fields were joined with treatment costs estimated using RSMeans to determine the costliest distress. In asphalt surfaced pavements…
United States Air Force airfield PAVER pavement management system enterprise data was reviewed for 67 networks. The distress survey extents and severity fields were joined with treatment costs estimated using RSMeans to determine the costliest distress. In asphalt surfaced pavements Longitudinal/transverse cracking, weathering, and block cracking resulted in the most pavement condition index (PCI) deducts while the costliest distresses are weathering, block cracking and longitudinal cracking. In portland cement concrete surfaced pavements linear cracking, joint seal damage, and joint spalling resulted in the most PCI deducts while the costliest distresses are joint seal damage, linear cracking, and corner spalling. The results of this data were then compared to airfield attributes: Pavement Temperature Group, Dominant American Association of State Highway and Transportation Officials (AASHTO) Soil Classification, Pavement- Transportation Computer Assisted Structural Engineering (PCASE) Climate Zone, and years since last maintenance. Maps showing the Pavement Temperature Group, Dominant AASHTO Soil Classification, and PCASE Climate Zone are included in Appendix A. Alligator cracking is most prevalent at the airfields with PTG 64-34 (Ellsworth, Fairchild, Hill, and Offutt) and 58-22 (Niagara and Vandenberg). Rutting is most prevalent at PTG 64-34 (Ellsworth, Fairchild, Hill, and Offutt). An increasing trend of joint spalling, corner spalling, and corner break with decreasing soil quality (AASHOTO A-1 to A-8 soils). The PCASE Climate Zone Cost Indices the cost index for weathering is approximately double in the moist region over the dry region. The cost index for block cracking is approximately double in the cold region over the hot region. It is recommended that the agency review its pavement performance modeling in the pavement management system to increase the recommendation of pavement preservation treatments and review the use of higher quality materials for pavement maintenance treatments.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The use of reinforcing fibers in asphalt concrete (AC) has been documented in many studies. Published studies generally demonstrate positive benefits from using mechanically fiber reinforced asphalt concrete (M-FRAC); however, improvements generally vary with respect to the particular study. The…
The use of reinforcing fibers in asphalt concrete (AC) has been documented in many studies. Published studies generally demonstrate positive benefits from using mechanically fiber reinforced asphalt concrete (M-FRAC); however, improvements generally vary with respect to the particular study. The widespread acceptance of fibers use in the asphalt industry is hindered by these inconsistencies. This study seeks to fulfill a critical knowledge gap by advancing knowledge of M-FRAC in order to better understand, interpret, and predict the behavior of these materials. The specific objectives of this dissertation are to; (a) evaluate the state of aramid fiber in AC and examine their impacts on the mechanical performance of asphalt mixtures; (b) evaluate the interaction of the reinforcement efficiency of fibers with compositions of asphalt mixtures; (c) evaluate tensile and fracture properties of M-FRAC; (d) evaluate the interfacial shear bond strength and critical fiber length in M-FRAC; and (e) propose micromechanical models for prediction of the tensile strength of M-FRAC. The research approach to achieve these objectives included experimental measurements and theoretical considerations. Throughout the study, the mechanical response of specimens with and without fibers are scrutinized using standard test methods including flow number (AASHTO T 378) and uniaxial fatigue (AASHTO TP 107), and non-standard test methods for fiber extraction, direct tension, semi-circular bending, and single fiber pull-out tests. Then, the fiber reinforcement mechanism is further examined by using the basic theories of viscoelasticity as well as micromechanical models.
The findings of this study suggest that fibers do serve as a reinforcement element in AC; however, their reinforcing effectiveness depends on the state of fibers in the mix, temperature/ loading rate, properties of fiber (i.e. dosage, length), properties of mix type (gradation and binder content), and mechanical test type to characterize M-FRAC. The outcome of every single aforementioned elements identifies key reasons attributed to the fiber reinforcement efficiency in AC, which provides insights to justify the discrepancies in the literature and further recommends solutions to overcome the knowledge gaps. This improved insight will translate into the better deployment of existing fiber-based technologies; the development of new, and more effective fiber-based technologies in asphalt mixtures.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
It is common to use crumb rubber as modifier in bitumen. Good performance of crumb rubber in bitumen has been reported in terms of improving characteristics like higher skid resistance, reducing noise, higher rutting resistance and longevity. However, due to…
It is common to use crumb rubber as modifier in bitumen. Good performance of crumb rubber in bitumen has been reported in terms of improving characteristics like higher skid resistance, reducing noise, higher rutting resistance and longevity. However, due to the vulcanization, the polymeric crosslinked structure of crumb rubber suffers from inadequate dispersion and incompatibility in bitumen where storage stability becomes an issue. To solve this problem, partial surface devulcanization of the rubber via chemical and microbial surface activation was examined in this study showing both method can be effective to enhance rubber-bitumen interactions and subsequently storage stability of the rubberized bitumen. To ensure proper surface activation, it is important to thoroughly understand chemo-mechanics of bitumen containing rubber particles as well as underlying interaction mechanism at the molecular level. Therefore, this study integrates a multi-scale approach using density functional theory based computational modeling and laboratory experiments to provide an in-depth understanding of the mechanisms of interaction between surface activated rubber and bitumen. To do so, efficacy of various bio-modifiers was examined and compared it terms of both surface activation capability and durability of resulting rubberized bitumen. It was found that biomodifiers with various compositions can have either synergistic or antagonistic effect onchemo-mechanics of rubberized bitumen. The study was further extended to study the interplay of Polyphosphoric Acid (PPA) and these biomodified rubberized bitumens showing not all modifiers have high synergy with PPA in bitumens. Finally, durability of rubberized bitumen was studied in terms of its resistance to Ultraviolet (UV) aging. It was shown that there is a strong relation between composition of biomodified rubberized bitumen and its resistance to UV-aging.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This research focused on the structure-property relationships of a rejuvenator to understand the comprehensive rejuvenation mechanism of aged asphalt binder. Aged asphalt such as recycled asphalt shingles (RAS) and reclaimed asphalt pavement (RAP) contain various amounts of asphalt binder. However,…
This research focused on the structure-property relationships of a rejuvenator to understand the comprehensive rejuvenation mechanism of aged asphalt binder. Aged asphalt such as recycled asphalt shingles (RAS) and reclaimed asphalt pavement (RAP) contain various amounts of asphalt binder. However, the asphalt binder in RAS and RAP is severely aged and inferior in properties compared to a virgin binder. To address this issue, liquid additives have been used under the general title of rejuvenators. That poses an additional challenge associated with the lack of clear metrics to differentiate between softeners and rejuvenators. Therefore, there is a need for a thorough study of rejuvenators. In this study, diverse-sourced rejuvenators have been used in RAS and RAP-modified binders as well as laboratory-prepared aged binders. The properties of the rejuvenated aged binder were characterized at a macro-level and molecular level. The study showed that the performance of the RAS-modified binder was significantly improved after bio-modification by a bio-rejuvenator.
This study further evaluated laboratory-prepared aged asphalt rejuvenated with different rejuvenators. The results found that oxidized bitumen became soft after adding rejuvenators, regardless of their source. Molecular dynamics simulation showed that the effective rejuvenator restored the molecular conformation and reduced the size of asphaltene nanoaggregates.
The study results showed that due to the specific chemical composition of certain rejuvenators, they may negatively impact the durability of the mixture, especially about its resistance to moisture damage and aging. Computational analysis showed that while the restoration capacity of rejuvenators is related to their penetration into and peptizing of asphaltene nanoaggregates, the durability of the restored aged asphalt is mainly related to the polarizability values of the rejuvenator. Rejuvenators with lower polarizability showed better resistance to aging and moisture damage.
In summary, this study develops the rheology-based indicators which relate to the molecular level phenomenon in the rejuvenation mechanism. The rheology-based indicators, for instance, crossover modulus and crossover frequency differentiated the rejuvenators from recycling agents. Moreover, the study found that rejuvenation efficiency and durability are depended on the chemistry of rejuvenators. Finally, based on the learning of chemistry, a chemically balanced rejuvenator is synthesized with superior rejuvenation properties.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)