Assessing the Utility of Various Buffer Concentrations for Alleviating pH Gradients in Geobacter sulfurreducens Biofilms

193616-Thumbnail Image.png
Description
In order to optimize the ability of Geobacter sulfurreducens to produce electrical current and remediate wastewater, several physiological challenges must be overcome. The accumulation of protons at the electrode surface of a microbial fuel cell (MFC) decreases the pH, and,

In order to optimize the ability of Geobacter sulfurreducens to produce electrical current and remediate wastewater, several physiological challenges must be overcome. The accumulation of protons at the electrode surface of a microbial fuel cell (MFC) decreases the pH, and, thus, the ability of the bacteria to maintain baseline metabolic conditions. To evaluate the extent to which this pH change hinders performance, the buffer concentration supplied to G. sulfurreducens reactors was varied. The resulting biofilms were subjected to chronoamperometry, cyclic voltammetry, and confocal microscopy to determine metabolic function and biofilm thickness. Biofilms grown with a 30-mM bicarbonate buffer experienced limitations on cell function and current output due to proton accumulation, while 90- and 150-mM conditions alleviated these limitations most of the measurements. Based on the current output, estimated biofilm thickness, and the medium-rate and slow-rate scan rate cyclic voltammetry, benefits exist for buffer concentrations greater than 30 mM. If the kinetics of G. sulfurreducens electron transfer are optimized, the potential of the technique to be implemented for energy recovery is improved.
Date Created
2024
Agent

The Detection and Quantification of Tire Derived Chemicals, 6PPD and 6PPD-quinone

Description
In the realm of environmental engineering, the compound N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), has recently emerged as an environmental concern. 6PPD serves as a tire additive to prolong the lifespan of rubber but can transform into a more toxic derivative, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-quinone), when

In the realm of environmental engineering, the compound N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), has recently emerged as an environmental concern. 6PPD serves as a tire additive to prolong the lifespan of rubber but can transform into a more toxic derivative, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-quinone), when exposed to ground-level ozone. Initially, my research sought to investigate the biodegradation of 6PPD and 6PPD-quinone using microbial cultures. However, unexpected challenges arising from limited solubility and potential toxicity to microorganisms led to a shift in research objectives. The study then refocused on developing methods for detecting and quantifying 6PPD and 6PPD-quinone. The scarcity of literature available on the environmental fate and transport of these compounds underscores the pressing need for further research to gain a comprehensive understanding of the behavior of these chemicals. Consequently, the development of effective detection strategies will enable the development of effective remediation strategies to safeguard aquatic ecosystems.
Date Created
2023-12
Agent

Biodegradation of Surfactants in the O2-based MBfR and the Impacts on the Microbial Community and Antimicrobial-resistance Genes

187746-Thumbnail Image.png
Description
While most household surfactants are biodegradable in aerobic conditions, their presence in a microbiological treatment process can lead to the proliferation of antimicrobial-resistance genes (ARG) in bacteria, such as Pseudomonas aeruginosa. Surfactants can be cationic, anionic, or zwitterionic, and

While most household surfactants are biodegradable in aerobic conditions, their presence in a microbiological treatment process can lead to the proliferation of antimicrobial-resistance genes (ARG) in bacteria, such as Pseudomonas aeruginosa. Surfactants can be cationic, anionic, or zwitterionic, and these different classes may have different effects on the proliferation of ARG. This study evaluated how the three classes of surfactants affected the microbial community’s structure and ARG in O2-based membrane biofilm reactors (O2-MBfRs) that provided at least 98% surfactant removal. Cationic cetrimonium bromide (CTAB) had by far the strongest impact with highest ARG abundance in the biofilm. In particular, Pseudomonas and Stenotrophomonas, the two main genera in the biofilm treating CTAB, were highly correlated to the abundance of ARG for efflux pumps and antibiotic inactivation. CTAB also promoted potential of horizontal gene transfer (HGT) of ARG. Combining results from the metabolome and metagenome identified four possible pathways for CTAB biodegradation. Of special important is a new pathway: β-carbon oxidation of CTAB to produce betaine. An insufficient nitrogen source could lead to irreversible ARB and ARG enrichment in the MBfR biofilm. Finally, a two-stage O2-MBfR successfully removed a high concentration (730 mg/L) of CTAB: Partial CTAB removal in the Lead reactor relieved inhibition in the Lag reactor. Metagenomic analysis also revealed that the Lag reactor was enriched in genes for CTAB and metabolite oxygenation.
Date Created
2023
Agent

Composition and Dynamics of Microbiomes Involved in Chain Elongation Driven Reductive Dehalogenation

185078-Thumbnail Image.png
Description

Microbial chain elongation (CE) has been shown at laboratory scale to drive reductive dehalogenation (RD) of chlorinated ethenes through both primary (oxidation of ethanol) and secondary (fermentation of medium chain carboxylates) hydrogen (H2) production. This process can offer engineers a

Microbial chain elongation (CE) has been shown at laboratory scale to drive reductive dehalogenation (RD) of chlorinated ethenes through both primary (oxidation of ethanol) and secondary (fermentation of medium chain carboxylates) hydrogen (H2) production. This process can offer engineers a sustainable in situ bioremediation alternative to address the challenges of conventional treatment technologies and processes. To aid in moving this process into field scale applications, a greater understanding of the specific microbiomes involved in both primary and secondary processes is needed. In this study, microbial community analysis was conducted on groundwater microcosms under various CE substrate combinations to quantify the extent of CE and the effect on RD of cis-1,2-dichloroethene (cis-DCE). Taxonomic classification of amplicon sequence variants obtained from DNA extracted from groundwater microcosms were used to characterize microbiomes using QIIME 2. Pielou’s eveness and beta diversity (via unweighted UniFrac distances) analyses were performed to assess the diversity of microbiomes. Overall, low concentration microcosms (excluding L-7:1 EtOH:Butyrate and L-9:1 EtOH:Acetate + Soil) underwent complete RD, as evidenced by significant ethene production. Alpha and beta diversity analyses confirm the findings of chemical data that the overall substrate concentrations played a major role in determining the extent of CE and RD.

Date Created
2023-05
Agent

Phosphate and Nitrate Removal from Impacted Waters by Combined Physical-Chemical and Microbiological Transformations

168764-Thumbnail Image.png
Description
Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits

Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This dissertation investigated combined physical-chemical and microbiological technologies for combined P and N removal from nonpoint sources. Chapter 2 investigated the combination of basic oxygen furnace (BOF) steel slag and woody mulch for P removal by mineral precipitation and N removal by microbial denitrification. When combined with mulch in column experiments, slag with high fines content achieved complete P removal under unsaturated conditions. Batch experiments showed that microbial denitrification occurred under the highly alkaline conditions created by steel slag, but the timescale differential between P and N removal was a critical barrier to combining these treatment technologies. Chapter 3 evaluated a field-scale slag filter to treat agricultural tile drainage and lab-scale column experiments to provide insight on field conditions that impacted P removal. Increases in alkalinity had negative influences on P removal through inhibition of P mineral precipitation by BOF slag, while blast furnace (BF) steel slag was less impacted by alkalinity due to primarily adsorptive P removal. Regeneration strategies were identified based on water quality and slag type.Chapters 4 and 5 explored biological ion exchange (BIEX) as an option for addressing the timescale offset identified in Chapter 1. In Chapter 4 columns fed with dissolved organic matter (DOM) were not regenerated and over 50% DOM removal was observed, with the primary mechanism of removal identified as secondary ion exchange (SIEX) between sulfate and DOM fractions with high affinities for ion exchange. Chapter 5 aimed to expand BIEX to N treatment through batch denitrification and adsorption experiments, which revealed a positive relationship between molecular weight of organic molecules and their ability to displace nitrate. This work shows that by having an improved understanding of impacted water characteristics, the information presented in this work can be used to select and implement effective treatment technologies for decentralized areas.
Date Created
2022
Agent

Exploring the Presence of Native Chain-Elongating Microbes in Soil and Groundwater from a Superfund Site

165540-Thumbnail Image.png
Description

Chlorinated ethene contamination is present at hundreds of sites around the U.S. and threatens the health and quality of living in many communities. Complete reductive dechlorination of chlorinated ethenes to ethene is possible by the anaerobic bacteria Dehalococcoides mccartyi which

Chlorinated ethene contamination is present at hundreds of sites around the U.S. and threatens the health and quality of living in many communities. Complete reductive dechlorination of chlorinated ethenes to ethene is possible by the anaerobic bacteria Dehalococcoides mccartyi which uses H2 as an electron donor for the process. Microbial chain elongation (MCE) has recently shown viability as an H2 producing process for reductive dechlorination. This study examined the presence of native chain-elongating organisms in soil and groundwater samples from a Superfund site contaminated with chlorinated ethenes using batch microcosms experiments. The study’s findings have implications for the use of MCE to promote detoxification of chlorinated ethenes at contaminated sites.

Date Created
2022-05
Agent

The Properties and Longevity of Crude Urease Extract for Biocementation

161919-Thumbnail Image.png
Description
Urease, an amidohydrolase, is an essential ingredient in the emerging engineering technique of biocementation. When free urease enzyme is used this carbonate precipitation process is often referred to as enzyme induced carbonate precipitation (EICP). To date, most engineering applications of

Urease, an amidohydrolase, is an essential ingredient in the emerging engineering technique of biocementation. When free urease enzyme is used this carbonate precipitation process is often referred to as enzyme induced carbonate precipitation (EICP). To date, most engineering applications of EICP have used commercially available powdered urease. However, the high cost of commercially available urease is a major barrier to adoption of engineering applications of EICP in practice. The objective of this dissertation was to develop a simple and inexpensive enzyme production technique using agricultural resources. The specific objectives of this dissertation were (i) to develop a simple extraction process to obtain urease from common agricultural resources and identify a preferred agricultural resource for further study, (ii) to reduce the cost of enzyme production by eliminating the use of a buffer, centrifugation, and dehusking of the beans during the extraction process, (iii) investigate the stability of the extracted enzyme both in solution and after reduction to a powder by lyophilization (freeze-drying), and (iv) to study the kinetics of the extracted enzyme. The results presented in this dissertation confirmed that inexpensive crude extracts of urease from agricultural products, including jack beans, soybeans, and watermelon seeds, are effective at catalyzing urea hydrolysis for carbonate precipitation. Based upon unit yield, jack beans were identified as the preferred agricultural resource for urease extraction. Results also showed that the jack bean extract retained its activity even after replacing the buffer with tap water and eliminating acetone fractionation, centrifugation, and dehusking. It was also found that the lyophilized crude extract maintained its activity during storage for at least one year and more effectively than either the crude extract solution or rehydrated commercial urease. The kinetics of the extracted enzyme was studied to gain greater insight into the optimum concentration of urea in engineering applications of EICP. Results showed higher values for the half-saturation coefficient of the crude extract compared to the commercial enzymes. The results presented in this dissertation demonstrate the potential for a significant reduction in the cost of applying EICP in engineering practice by mass production of urease enzyme via a simple extraction process.
Date Created
2021
Agent

Surface Activation of Rubber to Enhance the Durability and Chemo-Mechanics of Asphalt

158629-Thumbnail Image.png
Description
It is common to use crumb rubber as modifier in bitumen. Good performance of crumb rubber in bitumen has been reported in terms of improving characteristics like higher skid resistance, reducing noise, higher rutting resistance and longevity. However, due to

It is common to use crumb rubber as modifier in bitumen. Good performance of crumb rubber in bitumen has been reported in terms of improving characteristics like higher skid resistance, reducing noise, higher rutting resistance and longevity. However, due to the vulcanization, the polymeric crosslinked structure of crumb rubber suffers from inadequate dispersion and incompatibility in bitumen where storage stability becomes an issue. To solve this problem, partial surface devulcanization of the rubber via chemical and microbial surface activation was examined in this study showing both method can be effective to enhance rubber-bitumen interactions and subsequently storage stability of the rubberized bitumen. To ensure proper surface activation, it is important to thoroughly understand chemo-mechanics of bitumen containing rubber particles as well as underlying interaction mechanism at the molecular level. Therefore, this study integrates a multi-scale approach using density functional theory based computational modeling and laboratory experiments to provide an in-depth understanding of the mechanisms of interaction between surface activated rubber and bitumen. To do so, efficacy of various bio-modifiers was examined and compared it terms of both surface activation capability and durability of resulting rubberized bitumen. It was found that biomodifiers with various compositions can have either synergistic or antagonistic effect onchemo-mechanics of rubberized bitumen. The study was further extended to study the interplay of Polyphosphoric Acid (PPA) and these biomodified rubberized bitumens showing not all modifiers have high synergy with PPA in bitumens. Finally, durability of rubberized bitumen was studied in terms of its resistance to Ultraviolet (UV) aging. It was shown that there is a strong relation between composition of biomodified rubberized bitumen and its resistance to UV-aging.
Date Created
2020
Agent

Treating energetics-contaminated wastewater

157813-Thumbnail Image.png
Description
This study reports on the treatment of ammunition wastewater containing RDX (1,3,5-Trinitro-1,3,5-triazinane), HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane), and the oxyanion co-contaminants nitrate (NO3-) and perchlorate (ClO4-) in a membrane biofilm reactor (MBfR), a Palladium (Pd)-coated MBfR (Pd-MBfR), and an abiotic Pd-coated film reactor

This study reports on the treatment of ammunition wastewater containing RDX (1,3,5-Trinitro-1,3,5-triazinane), HMX (1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane), and the oxyanion co-contaminants nitrate (NO3-) and perchlorate (ClO4-) in a membrane biofilm reactor (MBfR), a Palladium (Pd)-coated MBfR (Pd-MBfR), and an abiotic Pd-coated film reactor (Pd-film reactor). A consortium of nitrate- and perchlorate-reducing bacteria, continuously fed with synesthetic ammunition wastewater featuring 4 mM nitrate and 0.1-2 mM perchlorate, formed robust biofilms on the membrane surfaces in the MBfR and Pd-MBfR. PdNPs with diameter 4-5-nm auto-assembled and stabilized on the surfaces of membrane and biofilm in MPfR and Pd-MBfR. Nitrate and perchlorate were rapidly reduced by the biofilms in the MBfR and Pd-MBfR, but they were not catalytically reduced through PdNPs alone in the MPfR. In contrast, RDX or HMX was recalcitrant to enzymatic degradation in MBfR, but was rapidly reduced through Pd-catalytic denitration in the MPfR and Pd-MBfR to form ‒N‒NHOH or ‒N‒H. Based on the experimental results, the synergistic coupling of Pd-based catalysis and microbial activity in the Pd-MBfR should be a viable new technology for treating ammunition wastewater.
Date Created
2019
Agent

Comparative transport of E. coli and Legionella in 2-dimensional porous media tank

157739-Thumbnail Image.png
Description
The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The

The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6% chlorine solution with subsequent backwashing with chlorine-neutral water (tap water and Na2S2O3) thus ensuring no residual chlorine in the tank. The transport of bacteria was measured using samples collected from ports at vertical distances of 5, 15 and 25 inches (12.7, 38.1 and 63.5 cm) from the surface of the sand on both sides for the 2-D tank. An influent concentration of 105 CFU/mL was set as a baseline for both microbes and the percolation rate was set at 11.37 inches/day using a peristaltic pump at the bottom outlet. At depths of 5, 15 and 25 inches, E. coli breakthroughs were recorded at 5, 17 and 28 hours for the ports on the right side and 7, 17 and 29 hours for the ports on the left sides, respectively. At respective distances Legionella breakthroughs were recorded at 8, 22 and 35 hours for the ports on the right side and 9, 24, 36 hours for the ports on the left side, respectively which is homologous to its pleomorphic nature. A tracer test was done and the visual breakthroughs were recorded at the same depths as the microbes. The breakthroughs for the dye at depths of 5, 15 and 25 inches, were recorded at 13.5, 41 and 67 hours for the ports on the right side and 15, 42.5 and 69 hours for the ports on the left side, respectively. However, these are based on visual estimates and the physical breakthrough could have happened at the respective heights before the reported times. This study provided a good basis for the premise that transport of bacterial cells and chemicals exists under recharge practices.
Date Created
2019
Agent