A probabilistic framework of transfer learning- theory and application

154099-Thumbnail Image.png
Description
Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks.
Date Created
2015
Agent

Bayesian D-optimal design issues and optimal design construction methods for generalized linear models with random blocks

154080-Thumbnail Image.png
Description
Optimal experimental design for generalized linear models is often done using a pseudo-Bayesian approach that integrates the design criterion across a prior distribution on the parameter values. This approach ignores the lack of utility of certain models contained in

Optimal experimental design for generalized linear models is often done using a pseudo-Bayesian approach that integrates the design criterion across a prior distribution on the parameter values. This approach ignores the lack of utility of certain models contained in the prior, and a case is demonstrated where the heavy focus on such hopeless models results in a design with poor performance and with wild swings in coverage probabilities for Wald-type confidence intervals. Design construction using a utility-based approach is shown to result in much more stable coverage probabilities in the area of greatest concern.

The pseudo-Bayesian approach can be applied to the problem of optimal design construction under dependent observations. Often, correlation between observations exists due to restrictions on randomization. Several techniques for optimal design construction are proposed in the case of the conditional response distribution being a natural exponential family member but with a normally distributed block effect . The reviewed pseudo-Bayesian approach is compared to an approach based on substituting the marginal likelihood with the joint likelihood and an approach based on projections of the score function (often called quasi-likelihood). These approaches are compared for several models with normal, Poisson, and binomial conditional response distributions via the true determinant of the expected Fisher information matrix where the dispersion of the random blocks is considered a nuisance parameter. A case study using the developed methods is performed.

The joint and quasi-likelihood methods are then extended to address the case when the magnitude of random block dispersion is of concern. Again, a simulation study over several models is performed, followed by a case study when the conditional response distribution is a Poisson distribution.
Date Created
2015
Agent

A framework for screening experiments and modelling in complex systems

153607-Thumbnail Image.png
Description
Complex systems are pervasive in science and engineering. Some examples include complex engineered networks such as the internet, the power grid, and transportation networks. The complexity of such systems arises not just from their size, but also from their structure,

Complex systems are pervasive in science and engineering. Some examples include complex engineered networks such as the internet, the power grid, and transportation networks. The complexity of such systems arises not just from their size, but also from their structure, operation (including control and management), evolution over time, and that people are involved in their design and operation. Our understanding of such systems is limited because their behaviour cannot be characterized using traditional techniques of modelling and analysis.

As a step in model development, statistically designed screening experiments may be used to identify the main effects and interactions most significant on a response of a system. However, traditional approaches for screening are ineffective for complex systems because of the size of the experimental design. Consequently, the factors considered are often restricted, but this automatically restricts the interactions that may be identified as well. Alternatively, the designs are restricted to only identify main effects, but this then fails to consider any possible interactions of the factors.

To address this problem, a specific combinatorial design termed a locating array is proposed as a screening design for complex systems. Locating arrays exhibit logarithmic growth in the number of factors because their focus is on identification rather than on measurement. This makes practical the consideration of an order of magnitude more factors in experimentation than traditional screening designs.

As a proof-of-concept, a locating array is applied to screen for main effects and low-order interactions on the response of average transport control protocol (TCP) throughput in a simulation model of a mobile ad hoc network (MANET). A MANET is a collection of mobile wireless nodes that self-organize without the aid of any centralized control or fixed infrastructure. The full-factorial design for the MANET considered is infeasible (with over 10^{43} design points) yet a locating array has only 421 design points.

In conjunction with the locating array, a ``heavy hitters'' algorithm is developed to identify the influential main effects and two-way interactions, correcting for the non-normal distribution of the average throughput, and uneven coverage of terms in the locating array. The significance of the identified main effects and interactions is validated independently using the statistical software JMP.

The statistical characteristics used to evaluate traditional screening designs are also applied to locating arrays.

These include the matrix of covariance, fraction of design space, and aliasing, among others. The results lend additional support to the use of locating arrays as screening designs.

The use of locating arrays as screening designs for complex engineered systems is promising as they yield useful models. This facilitates quantitative evaluation of architectures and protocols and contributes to our understanding of complex engineered networks.
Date Created
2015
Agent

Experimental designs for generalized linear models and functional magnetic resonance imaging

153224-Thumbnail Image.png
Description
In this era of fast computational machines and new optimization algorithms, there have been great advances in Experimental Designs. We focus our research on design issues in generalized linear models (GLMs) and functional magnetic resonance imaging(fMRI). The first part of

In this era of fast computational machines and new optimization algorithms, there have been great advances in Experimental Designs. We focus our research on design issues in generalized linear models (GLMs) and functional magnetic resonance imaging(fMRI). The first part of our research is on tackling the challenging problem of constructing

exact designs for GLMs, that are robust against parameter, link and model

uncertainties by improving an existing algorithm and providing a new one, based on using a continuous particle swarm optimization (PSO) and spectral clustering. The proposed algorithm is sufficiently versatile to accomodate most popular design selection criteria, and we concentrate on providing robust designs for GLMs, using the D and A optimality criterion. The second part of our research is on providing an algorithm

that is a faster alternative to a recently proposed genetic algorithm (GA) to construct optimal designs for fMRI studies. Our algorithm is built upon a discrete version of the PSO.
Date Created
2014
Agent

A statistical approach to solar photovoltaic module lifetime prediction

153145-Thumbnail Image.png
Description
The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually calculated using a simple linear extrapolation based on the annual field degradation rate (say, 0.8% drop in power output per year). It has been 26 years since systematic studies on solar PV module lifetime prediction were undertaken as part of the 11-year flat-plate solar array (FSA) project of the Jet Propulsion Laboratory (JPL) funded by DOE. Since then, PV modules have gone through significant changes in construction materials and design; making most of the field data obsolete, though the effect field stressors on the old designs/materials is valuable to be understood. Efforts have been made to adapt some of the techniques developed to the current technologies, but they are too often limited in scope and too reliant on empirical generalizations of previous results. Some systematic approaches have been proposed based on accelerated testing, but no or little experimental studies have followed. Consequently, the industry does not exactly know today how to test modules for a 20 - 30 years lifetime.

This research study focuses on the behavior of crystalline silicon PV module technology in the dry and hot climatic condition of Tempe/Phoenix, Arizona. A three-phase approach was developed: (1) A quantitative failure modes, effects, and criticality analysis (FMECA) was developed for prioritizing failure modes or mechanisms in a given environment; (2) A time-series approach was used to model environmental stress variables involved and prioritize their effect on the power output drop; and (3) A procedure for developing a prediction model was proposed for the climatic specific condition based on accelerated degradation testing
Date Created
2014
Agent

Applied meta-analysis of lead-free solder reliability

153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
Date Created
2014
Agent

Analysis of no-confounding designs using the dantzig selector

153053-Thumbnail Image.png
Description
No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional factorial designs that have been suggested as attractive alternatives to the regular minimum aberration resolution IV designs because they do not completely confound any two-factor

No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional factorial designs that have been suggested as attractive alternatives to the regular minimum aberration resolution IV designs because they do not completely confound any two-factor interactions with each other. These designs allow for potential estimation of main effects and a few two-factor interactions without the need for follow-up experimentation. Analysis methods for non-regular designs is an area of ongoing research, because standard variable selection techniques such as stepwise regression may not always be the best approach. The current work investigates the use of the Dantzig selector for analyzing no-confounding designs. Through a series of examples it shows that this technique is very effective for identifying the set of active factors in no-confounding designs when there are three of four active main effects and up to two active two-factor interactions.

To evaluate the performance of Dantzig selector, a simulation study was conducted and the results based on the percentage of type II errors are analyzed. Also, another alternative for 6 factor NC design, called the Alternate No-confounding design in six factors is introduced in this study. The performance of this Alternate NC design in 6 factors is then evaluated by using Dantzig selector as an analysis method. Lastly, a section is dedicated to comparing the performance of NC-6 and Alternate NC-6 designs.
Date Created
2014
Agent

Simulation-based Bayesian optimal accelerated life test design and model discrimination

152902-Thumbnail Image.png
Description
Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress

Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of experiments due to the stress factor-level combinations resulting from the increased number of factors. Chapter 2 provides an approach for designing ALT plans with multiple stresses utilizing Latin hypercube designs that reduces the simulation cost without loss of statistical efficiency. A comparison to full grid and large-sample approximation methods illustrates the approach computational cost gain and flexibility in determining optimal stress settings with less assumptions and more intuitive unit allocations.

Implicit in the design criteria of current ALT designs is the assumption that the form of the acceleration model is correct. This is unrealistic assumption in many real-world problems. Chapter 3 provides an approach for ALT optimum design for model discrimination. We utilize the Hellinger distance measure between predictive distributions. The optimal ALT plan at three stress levels was determined and its performance was compared to good compromise plan, best traditional plan and well-known 4:2:1 compromise test plans. In the case of linear versus quadratic ALT models, the proposed method increased the test plan's ability to distinguish among competing models and provided better guidance as to which model is appropriate for the experiment.

Chapter 4 extends the approach of Chapter 3 to ALT sequential model discrimination. An initial experiment is conducted to provide maximum possible information with respect to model discrimination. The follow-on experiment is planned by leveraging the most current information to allow for Bayesian model comparison through posterior model probability ratios. Results showed that performance of plan is adversely impacted by the amount of censoring in the data, in the case of linear vs. quadratic model form at three levels of constant stress, sequential testing can improve model recovery rate by approximately 8% when data is complete, but no apparent advantage in adopting sequential testing was found in the case of right-censored data when censoring is in excess of a certain amount.
Date Created
2014
Agent

Reliability information and testing integration for new product design

152860-Thumbnail Image.png
Description
In the three phases of the engineering design process (conceptual design, embodiment design and detailed design), traditional reliability information is scarce. However, there are different sources of information that provide reliability inputs while designing a new product. This research considered

In the three phases of the engineering design process (conceptual design, embodiment design and detailed design), traditional reliability information is scarce. However, there are different sources of information that provide reliability inputs while designing a new product. This research considered these sources to be further analyzed: reliability information from similar existing products denominated as parents, elicited experts' opinions, initial testing and the customer voice for creating design requirements. These sources were integrated with three novels approaches to produce reliability insights in the engineering design process, all under the Design for Reliability (DFR) philosophy. Firstly, an enhanced parenting process to assess reliability was presented. Using reliability information from parents it was possible to create a failure structure (parent matrix) to be compared against the new product. Then, expert opinions were elicited to provide the effects of the new design changes (parent factor). Combining those two elements resulted in a reliability assessment in early design process. Extending this approach into the conceptual design phase, a methodology was created to obtain a graphical reliability insight of a new product's concept. The approach can be summarized by three sequential steps: functional analysis, cognitive maps and Bayesian networks. These tools integrated the available information, created a graphical representation of the concept and provided quantitative reliability assessments. Lastly, to optimize resources when product testing is viable (e.g., detailed design) a type of accelerated life testing was recommended: the accelerated degradation tests. The potential for robust design engineering for this type of test was exploited. Then, robust design was achieved by setting the design factors at some levels such that the impact of stress factor variation on the degradation rate can be minimized. Finally, to validate the proposed approaches and methods, different case studies were presented.
Date Created
2014
Agent

A P-value based approach for phase II profile monitoring

152382-Thumbnail Image.png
Description
A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error

A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values are computed at each level within a sample. If at least one of the P-values is less than a pre-specified significance level, the chart signals out-of-control. The primary advantage of our approach is that only one control chart is required to monitor several parameters simultaneously: the intercept, slope(s), and the error standard deviation. A comprehensive comparison of the proposed method and the existing KMW-Shewhart method for monitoring linear profiles is conducted. In addition, the effect that the number of observations within a sample has on the performance of the proposed method is investigated. The proposed method was also compared to the T^2 method discussed in Kang and Albin (2000) for multivariate, polynomial, and nonlinear profiles. A simulation study shows that overall the proposed P-value method performs satisfactorily for different profile types.
Date Created
2013
Agent