Contributions to Optimal Experimental Design and Strategic Subdata Selection for Big Data

158520-Thumbnail Image.png
Description
In this dissertation two research questions in the field of applied experimental design were explored. First, methods for augmenting the three-level screening designs called Definitive Screening Designs (DSDs) were investigated. Second, schemes for strategic subdata selection for nonparametric

In this dissertation two research questions in the field of applied experimental design were explored. First, methods for augmenting the three-level screening designs called Definitive Screening Designs (DSDs) were investigated. Second, schemes for strategic subdata selection for nonparametric predictive modeling with big data were developed.

Under sparsity, the structure of DSDs can allow for the screening and optimization of a system in one step, but in non-sparse situations estimation of second-order models requires augmentation of the DSD. In this work, augmentation strategies for DSDs were considered, given the assumption that the correct form of the model for the response of interest is quadratic. Series of augmented designs were constructed and explored, and power calculations, model-robustness criteria, model-discrimination criteria, and simulation study results were used to identify the number of augmented runs necessary for (1) effectively identifying active model effects, and (2) precisely predicting a response of interest. When the goal is identification of active effects, it is shown that supersaturated designs are sufficient; when the goal is prediction, it is shown that little is gained by augmenting beyond the design that is saturated for the full quadratic model. Surprisingly, augmentation strategies based on the I-optimality criterion do not lead to better predictions than strategies based on the D-optimality criterion.

Computational limitations can render standard statistical methods infeasible in the face of massive datasets, necessitating subsampling strategies. In the big data context, the primary objective is often prediction but the correct form of the model for the response of interest is likely unknown. Here, two new methods of subdata selection were proposed. The first is based on clustering, the second is based on space-filling designs, and both are free from model assumptions. The performance of the proposed methods was explored visually via low-dimensional simulated examples; via real data applications; and via large simulation studies. In all cases the proposed methods were compared to existing, widely used subdata selection methods. The conditions under which the proposed methods provide advantages over standard subdata selection strategies were identified.
Date Created
2020
Agent

Essays on the Modeling of Binary Longitudinal Data with Time-dependent Covariates

158415-Thumbnail Image.png
Description
Longitudinal studies contain correlated data due to the repeated measurements on the same subject. The changing values of the time-dependent covariates and their association with the outcomes presents another source of correlation. Most methods used to analyze longitudinal data average

Longitudinal studies contain correlated data due to the repeated measurements on the same subject. The changing values of the time-dependent covariates and their association with the outcomes presents another source of correlation. Most methods used to analyze longitudinal data average the effects of time-dependent covariates on outcomes over time and provide a single regression coefficient per time-dependent covariate. This denies researchers the opportunity to follow the changing impact of time-dependent covariates on the outcomes. This dissertation addresses such issue through the use of partitioned regression coefficients in three different papers.

In the first paper, an alternative approach to the partitioned Generalized Method of Moments logistic regression model for longitudinal binary outcomes is presented. This method relies on Bayes estimators and is utilized when the partitioned Generalized Method of Moments model provides numerically unstable estimates of the regression coefficients. It is used to model obesity status in the Add Health study and cognitive impairment diagnosis in the National Alzheimer’s Coordination Center database.

The second paper develops a model that allows the joint modeling of two or more binary outcomes that provide an overall measure of a subject’s trait over time. The simultaneous modelling of all outcomes provides a complete picture of the overall measure of interest. This approach accounts for the correlation among and between the outcomes across time and the changing effects of time-dependent covariates on the outcomes. The model is used to analyze four outcomes measuring overall the quality of life in the Chinese Longitudinal Healthy Longevity Study.

The third paper presents an approach that allows for estimation of cross-sectional and lagged effects of the covariates on the outcome as well as the feedback of the response on future covariates. This is done in two-parts, in part-1, the effects of time-dependent covariates on the outcomes are estimated, then, in part-2, the outcome influences on future values of the covariates are measured. These model parameters are obtained through a Generalized Method of Moments procedure that uses valid moment conditions between the outcome and the covariates. Child morbidity in the Philippines and obesity status in the Add Health data are analyzed.
Date Created
2020
Agent

Spatial Mortality Modeling in Actuarial Science

158387-Thumbnail Image.png
Description
Modeling human survivorship is a core area of research within the actuarial com

munity. With life insurance policies and annuity products as dominant financial

instruments which depend on future mortality rates, there is a risk that observed

human mortality experiences will differ from

Modeling human survivorship is a core area of research within the actuarial com

munity. With life insurance policies and annuity products as dominant financial

instruments which depend on future mortality rates, there is a risk that observed

human mortality experiences will differ from projected when they are sold. From an

insurer’s portfolio perspective, to curb this risk, it is imperative that models of hu

man survivorship are constantly being updated and equipped to accurately gauge and

forecast mortality rates. At present, the majority of actuarial research in mortality

modeling involves factor-based approaches which operate at a global scale, placing

little attention on the determinants and interpretable risk factors of mortality, specif

ically from a spatial perspective. With an abundance of research being performed

in the field of spatial statistics and greater accessibility to localized mortality data,

there is a clear opportunity to extend the existing body of mortality literature to

wards the spatial domain. It is the objective of this dissertation to introduce these

new statistical approaches to equip the field of actuarial science to include geographic

space into the mortality modeling context.

First, this dissertation evaluates the underlying spatial patterns of mortality across

the United States, and introduces a spatial filtering methodology to generate latent

spatial patterns which capture the essence of these mortality rates in space. Second,

local modeling techniques are illustrated, and a multiscale geographically weighted

regression (MGWR) model is generated to describe the variation of mortality rates

across space in an interpretable manner which allows for the investigation of the

presence of spatial variability in the determinants of mortality. Third, techniques for

updating traditional mortality models are introduced, culminating in the development

of a model which addresses the relationship between space, economic growth, and

mortality. It is through these applications that this dissertation demonstrates the

utility in updating actuarial mortality models from a spatial perspective.
Date Created
2020
Agent

Comparison of Denominator Degrees of Freedom Approximations for Linear Mixed Models in Small-Sample Simulations

158282-Thumbnail Image.png
Description
Whilst linear mixed models offer a flexible approach to handle data with multiple sources of random variability, the related hypothesis testing for the fixed effects often encounters obstacles when the sample size is small and the underlying distribution for the

Whilst linear mixed models offer a flexible approach to handle data with multiple sources of random variability, the related hypothesis testing for the fixed effects often encounters obstacles when the sample size is small and the underlying distribution for the test statistic is unknown. Consequently, five methods of denominator degrees of freedom approximations (residual, containment, between-within, Satterthwaite, Kenward-Roger) are developed to overcome this problem. This study aims to evaluate the performance of these five methods with a mixed model consisting of random intercept and random slope. Specifically, simulations are conducted to provide insights on the F-statistics, denominator degrees of freedom and p-values each method gives with respect to different settings of the sample structure, the fixed-effect slopes and the missing-data proportion. The simulation results show that the residual method performs the worst in terms of F-statistics and p-values. Also, Satterthwaite and Kenward-Roger methods tend to be more sensitive to the change of designs. The Kenward-Roger method performs the best in terms of F-statistics when the null hypothesis is true.
Date Created
2020
Agent

Optimal Sampling Designs for Functional Data Analysis

158208-Thumbnail Image.png
Description
Functional regression models are widely considered in practice. To precisely understand an underlying functional mechanism, a good sampling schedule for collecting informative functional data is necessary, especially when data collection is limited. However, scarce research has been conducted on the

Functional regression models are widely considered in practice. To precisely understand an underlying functional mechanism, a good sampling schedule for collecting informative functional data is necessary, especially when data collection is limited. However, scarce research has been conducted on the optimal sampling schedule design for the functional regression model so far. To address this design issue, efficient approaches are proposed for generating the best sampling plan in the functional regression setting. First, three optimal experimental designs are considered under a function-on-function linear model: the schedule that maximizes the relative efficiency for recovering the predictor function, the schedule that maximizes the relative efficiency for predicting the response function, and the schedule that maximizes the mixture of the relative efficiencies of both the predictor and response functions. The obtained sampling plan allows a precise recovery of the predictor function and a precise prediction of the response function. The proposed approach can also be reduced to identify the optimal sampling plan for the problem with a scalar-on-function linear regression model. In addition, the optimality criterion on predicting a scalar response using a functional predictor is derived when the quadratic relationship between these two variables is present, and proofs of important properties of the derived optimality criterion are also provided. To find such designs, an algorithm that is comparably fast, and can generate nearly optimal designs is proposed. As the optimality criterion includes quantities that must be estimated from prior knowledge (e.g., a pilot study), the effectiveness of the suggested optimal design highly depends on the quality of the estimates. However, in many situations, the estimates are unreliable; thus, a bootstrap aggregating (bagging) approach is employed for enhancing the quality of estimates and for finding sampling schedules stable to the misspecification of estimates. Through case studies, it is demonstrated that the proposed designs outperform other designs in terms of accurately predicting the response and recovering the predictor. It is also proposed that bagging-enhanced design generates a more robust sampling design under the misspecification of estimated quantities.
Date Created
2020
Agent

Locally Optimal Experimental Designs for Mixed Responses Models

158061-Thumbnail Image.png
Description
Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type

Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model that is considered here involves a mixture of ordinary linear models for the continuous response and a generalized linear model for the binary response. Using the complete class approach, tighter upper bounds on the number of support points required for finding locally optimal designs are derived for the mixed responses models studied in this work.

In the first part of this dissertation, a theoretical result was developed to facilitate the search of locally symmetric optimal designs for mixed responses models with one continuous covariate. Then, the study was extended to mixed responses models that include group effects. Two types of mixed responses models with group effects were investigated. The first type includes models having no common parameters across subject group, and the second type of models allows some common parameters (e.g., a common slope) across groups. In addition to complete class results, an efficient algorithm (PSO-FM) was proposed to search for the A- and D-optimal designs. Finally, the first-order mixed responses model is extended to a type of a quadratic mixed responses model with a quadratic polynomial predictor placed in its linear model.
Date Created
2020
Agent

Maximin designs for event-related fMRI with uncertain error correlation

157893-Thumbnail Image.png
Description
One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for

One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the inner workings of the brain. Unfortunately, this is not an easy task, especially when the error correlation of the response is unknown at the design stage. In the literature, the maximin approach was proposed to tackle this problem. However, this is an expensive and time-consuming method, especially when the correlated noise follows high-order autoregressive models. The main focus of this dissertation is to develop an efficient approach to reduce the amount of the computational resources needed to obtain A-optimal designs for event-related fMRI experiments. One proposed idea is to combine the Kriging approximation method, which is widely used in spatial statistics and computer experiments with a knowledge-based genetic algorithm. Through case studies, a demonstration is made to show that the new search method achieves similar design efficiencies as those attained by the traditional method, but the new method gives a significant reduction in computing time. Another useful strategy is also proposed to find such designs by considering only the boundary points of the parameter space of the correlation parameters. The usefulness of this strategy is also demonstrated via case studies. The first part of this dissertation focuses on finding optimal event-related designs for fMRI with simple trials when each stimulus consists of only one component (e.g., a picture). The study is then extended to the case of compound trials when stimuli of multiple components (e.g., a cue followed by a picture) are considered.
Date Created
2019
Agent

Experimental design issues in functional brain imaging with high temporal resolution

157719-Thumbnail Image.png
Description
Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to

Functional brain imaging experiments are widely conducted in many fields for study- ing the underlying brain activity in response to mental stimuli. For such experiments, it is crucial to select a good sequence of mental stimuli that allow researchers to collect informative data for making precise and valid statistical inferences at minimum cost. In contrast to most existing studies, the aim of this study is to obtain optimal designs for brain mapping technology with an ultra-high temporal resolution with respect to some common statistical optimality criteria. The first topic of this work is on finding optimal designs when the primary interest is in estimating the Hemodynamic Response Function (HRF), a function of time describing the effect of a mental stimulus to the brain. A major challenge here is that the design matrix of the statistical model is greatly enlarged. As a result, it is very difficult, if not infeasible, to compute and compare the statistical efficiencies of competing designs. For tackling this issue, an efficient approach is built on subsampling the design matrix and the use of an efficient computer algorithm is proposed. It is demonstrated through the analytical and simulation results that the proposed approach can outperform the existing methods in terms of computing time, and the quality of the obtained designs. The second topic of this work is to find optimal designs when another set of popularly used basis functions is considered for modeling the HRF, e.g., to detect brain activations. Although the statistical model for analyzing the data remains linear, the parametric functions of interest under this setting are often nonlinear. The quality of the de- sign will then depend on the true value of some unknown parameters. To address this issue, the maximin approach is considered to identify designs that maximize the relative efficiencies over the parameter space. As shown in the case studies, these maximin designs yield high performance for detecting brain activation compared to the traditional designs that are widely used in practice.
Date Created
2019
Agent

Students’ Meanings for Stochastic Process While Developing a Conception of Distribution

157227-Thumbnail Image.png
Description
The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes?

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution.

I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I worked with Bonnie in an exploratory teaching setting through three sets of activities to see what meanings she would develop for randomness and stochastic process. The final phase consisted of me working with Danielle as she worked through the same activities as Bonnie but this time in teaching experiment setting where I used a series of interventions to test out how Danielle was thinking about stochastic processes.

My analysis shows that students can be aware that the word “random” lives in two worlds, thereby having conflicting meanings. Bonnie’s meaning for randomness evolved over the course of the study from an unproductive meaning centered on the emotions of the characters in the context to a meaning that randomness is the lack of a pattern. Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of stochastic/processes, leading her to engage in pattern-hunting behavior every time she needed to classify a process as stochastic or not. Danielle’s image of a stochastic process was grounded in whether she saw the repetition as being reproducible (process can be repeated, and outcomes are identical to prior time through the process) or replicable (process can be repeated but the outcomes aren’t in the same order as before). Danielle employed a strategy of carrying out several trials of the process, resetting the applet, and then carrying out the process again, making replicability central to her thinking.
Date Created
2019
Agent

Spatio-temporal statistical modeling: climate impacts due to bioenergy crop expansion

156722-Thumbnail Image.png
Description
Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial

Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switch-

grass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. In the effort of the cross-fertilization across the disciplines of physics-based modeling and spatio-temporal statistics, three topics are investigated in this dissertation aiming to provide a novel quantification and robust justifications of the hydroclimate impacts associated with bioenergy crop expansion. Topic 1 quantifies the hydroclimatic impacts associated with perennial bioenergy crop expansion over the contiguous United States using the Weather Research and Forecasting Model (WRF) dynamically coupled to a land surface model (LSM). A suite of continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based simulations is conducted. Hovmöller and Taylor diagrams are utilized to evaluate simulated temperature and precipitation. In addition, Mann-Kendall modified trend tests and Sieve-bootstrap trend tests are performed to evaluate the statistical significance of trends in soil moisture differences. Finally, this research reveals potential hot spots of suitable deployment and regions to avoid. Topic 2 presents spatio-temporal Bayesian models which quantify the robustness of control simulation bias, as well as biofuel impacts, using three spatio-temporal correlation structures. A hierarchical model with spatially varying intercepts and slopes display satisfactory performance in capturing spatio-temporal associations. Simulated temperature impacts due to perennial bioenergy crop expansion are robust to physics parameterization schemes. Topic 3 further focuses on the accuracy and efficiency of spatial-temporal statistical modeling for large datasets. An ensemble of spatio-temporal eigenvector filtering algorithms (hereafter: STEF) is proposed to account for the spatio-temporal autocorrelation structure of the data while taking into account spatial confounding. Monte Carlo experiments are conducted. This method is then used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.
Date Created
2018
Agent