Spatio-Temporal Methods for Analysis of Implications of Natural Hazard Risk

190981-Thumbnail Image.png
Description
As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation

As the impacts of climate change worsen in the coming decades, natural hazards are expected to increase in frequency and intensity, leading to increased loss and risk to human livelihood. The spatio-temporal statistical approaches developed and applied in this dissertation highlight the ways in which hazard data can be leveraged to understand loss trends, build forecasts, and study societal impacts of losses. Specifically, this work makes use of the Spatial Hazard Events and Losses Database which is an unparalleled source of loss data for the United States. The first portion of this dissertation develops accurate loss baselines that are crucial for mitigation planning, infrastructure investment, and risk communication. This is accomplished thorough a stationarity analysis of county level losses following a normalization procedure. A wide variety of studies employ loss data without addressing stationarity assumptions or the possibility for spurious regression. This work enables the statistically rigorous application of such loss time series to modeling applications. The second portion of this work develops a novel matrix variate dynamic factor model for spatio-temporal loss data stratified across multiple correlated hazards or perils. The developed model is employed to analyze and forecast losses from convective storms, which constitute some of the highest losses covered by insurers. Adopting factor-based approach, forecasts are achieved despite the complex and often unobserved underlying drivers of these losses. The developed methodology extends the literature on dynamic factor models to matrix variate time series. Specifically, a covariance structure is imposed that is well suited to spatio-temporal problems while significantly reducing model complexity. The model is fit via the EM algorithm and Kalman filter. The third and final part of this dissertation investigates the impact of compounding hazard events on state and regional migration in the United States. Any attempt to capture trends in climate related migration must account for the inherent uncertainties surrounding climate change, natural hazard occurrences, and socioeconomic factors. For this reason, I adopt a Bayesian modeling approach that enables the explicit estimation of the inherent uncertainty. This work can provide decision-makers with greater clarity regarding the extent of knowledge on climate trends.
Date Created
2023
Agent

Multiple Testing of Local Maxima for Detection of Peaks and Change Points with Non-stationary Noise

189356-Thumbnail Image.png
Description
This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project

This dissertation comprises two projects: (i) Multiple testing of local maxima for detection of peaks and change points with non-stationary noise, and (ii) Height distributions of critical points of smooth isotropic Gaussian fields: computations, simulations and asymptotics. The first project introduces a topological multiple testing method for one-dimensional domains to detect signals in the presence of non-stationary Gaussian noise. The approach involves conducting tests at local maxima based on two observation conditions: (i) the noise is smooth with unit variance and (ii) the noise is not smooth where kernel smoothing is applied to increase the signal-to-noise ratio (SNR). The smoothed signals are then standardized, which ensures that the variance of the new sequence's noise becomes one, making it possible to calculate $p$-values for all local maxima using random field theory. Assuming unimodal true signals with finite support and non-stationary Gaussian noise that can be repeatedly observed. The algorithm introduced in this work, demonstrates asymptotic strong control of the False Discovery Rate (FDR) and power consistency as the number of sequence repetitions and signal strength increase. Simulations indicate that FDR levels can also be controlled under non-asymptotic conditions with finite repetitions. The application of this algorithm to change point detection also guarantees FDR control and power consistency. The second project focuses on investigating the explicit and asymptotic height densities of critical points of smooth isotropic Gaussian random fields on both Euclidean space and spheres.The formulae are based on characterizing the distribution of the Hessian of the Gaussian field using the Gaussian orthogonally invariant (GOI) matrices and the Gaussian orthogonal ensemble (GOE) matrices, which are special cases of GOI matrices. However, as the dimension increases, calculating explicit formulae becomes computationally challenging. The project includes two simulation methods for these distributions. Additionally, asymptotic distributions are obtained by utilizing the asymptotic distribution of the eigenvalues (excluding the maximum eigenvalues) of the GOE matrix for large dimensions. However, when it comes to the maximum eigenvalue, the Tracy-Widom distribution is utilized. Simulation results demonstrate the close approximation between the asymptotic distribution and the real distribution when $N$ is sufficiently large.
Date Created
2023
Agent

Estimation for Disease Models Across Scales

171927-Thumbnail Image.png
Description
Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country

Tracking disease cases is an essential task in public health; however, tracking the number of cases of a disease may be difficult not every infection can be recorded by public health authorities. Notably, this may happen with whole country measles case reports, even such countries with robust registration systems. Eilertson et al. (2019) propose using a state-space model combined with maximum likelihood methods for estimating measles transmission. A Bayesian approach that uses particle Markov Chain Monte Carlo (pMCMC) is proposed to estimate the parameters of the non-linear state-space model developed in Eilertson et al. (2019) and similar previous studies. This dissertation illustrates the performance of this approach by calculating posterior estimates of the model parameters and predictions of the unobserved states in simulations and case studies. Also, Iteration Filtering (IF2) is used as a support method to verify the Bayesian estimation and to inform the selection of prior distributions. In the second half of the thesis, a birth-death process is proposed to model the unobserved population size of a disease vector. This model studies the effect of a disease vector population size on a second affected population. The second population follows a non-homogenous Poisson process when conditioned on the vector process with a transition rate given by a scaled version of the vector population. The observation model also measures a potential threshold event when the host species population size surpasses a certain level yielding a higher transmission rate. A maximum likelihood procedure is developed for this model, which combines particle filtering with the Minorize-Maximization (MM) algorithm and extends the work of Crawford et al. (2014).
Date Created
2022
Agent

Statistical Inference of Dynamics in Neurons via Stochastic EM

161250-Thumbnail Image.png
Description
Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle

Inside cells, axonal and dendritic transport by motor proteins is a process that is responsible for supplying cargo, such as vesicles and organelles, to support neuronal function. Motor proteins achieve transport through a cycle of chemical and mechanical processes. Particle tracking experiments are used to study this intracellular cargo transport by recording multi-dimensional, discrete cargo position trajectories over time. However, due to experimental limitations, much of the mechanochemical process cannot be directly observed, making mathematical modeling and statistical inference an essential tool for identifying the underlying mechanisms. The cargo movement during transport is modeled using a switching stochastic differential equation framework that involves classification into one of three proposed hidden regimes. Each regime is characterized by different levels of velocity and stochasticity. The equations are presented as a state-space model with Markovian properties. Through a stochastic expectation-maximization algorithm, statistical inference can be made based on the observed trajectory. Regime predictions and particle location predictions are calculated through an auxiliary particle filter and particle smoother. Based on these predictions, parameters are estimated through maximum likelihood. Diagnostics are proposed that can assess model performance and therefore also be a form of model selection criteria. Model selection is used to find the most accurate regime models and the optimal number of regimes for a certain motor-cargo system. A method for incorporating a second positional dimension is also introduced. These methods are tested on both simulated data and different types of experimental data.
Date Created
2021
Agent

Simultaneous Material Microstructure Classification and Discovery using Acoustic Emission Signals

158338-Thumbnail Image.png
Description
Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and

Acoustic emission (AE) signals have been widely employed for tracking material properties and structural characteristics. In this study, the aim is to analyze the AE signals gathered during a scanning probe lithography process to classify the known microstructure types and discover unknown surface microstructures/anomalies. To achieve this, a Hidden Markov Model is developed to consider the temporal dependency of the high-resolution AE data. Furthermore, the posterior classification probability and the negative likelihood score for microstructure classification and discovery are computed. Subsequently, a diagnostic procedure to identify the dominant AE frequencies that were used to track the microstructural characteristics is presented. In addition, machine learning methods such as KNN, Naive Bayes, and Logistic Regression classifiers are applied. Finally, the proposed approach applied to identify the surface microstructures of additively manufactured Ti-6Al-4V and show that it not only achieved a high classification accuracy (e.g., more than 90\%) but also correctly identified the microstructural anomalies that may be subjected to further investigation to discover new material phases/properties.
Date Created
2020
Agent

Locally Optimal Experimental Designs for Mixed Responses Models

158061-Thumbnail Image.png
Description
Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type

Bivariate responses that comprise mixtures of binary and continuous variables are common in medical, engineering, and other scientific fields. There exist many works concerning the analysis of such mixed data. However, the research on optimal designs for this type of experiments is still scarce. The joint mixed responses model that is considered here involves a mixture of ordinary linear models for the continuous response and a generalized linear model for the binary response. Using the complete class approach, tighter upper bounds on the number of support points required for finding locally optimal designs are derived for the mixed responses models studied in this work.

In the first part of this dissertation, a theoretical result was developed to facilitate the search of locally symmetric optimal designs for mixed responses models with one continuous covariate. Then, the study was extended to mixed responses models that include group effects. Two types of mixed responses models with group effects were investigated. The first type includes models having no common parameters across subject group, and the second type of models allows some common parameters (e.g., a common slope) across groups. In addition to complete class results, an efficient algorithm (PSO-FM) was proposed to search for the A- and D-optimal designs. Finally, the first-order mixed responses model is extended to a type of a quadratic mixed responses model with a quadratic polynomial predictor placed in its linear model.
Date Created
2020
Agent

Maximin designs for event-related fMRI with uncertain error correlation

157893-Thumbnail Image.png
Description
One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for

One of the premier technologies for studying human brain functions is the event-related functional magnetic resonance imaging (fMRI). The main design issue for such experiments is to find the optimal sequence for mental stimuli. This optimal design sequence allows for collecting informative data to make precise statistical inferences about the inner workings of the brain. Unfortunately, this is not an easy task, especially when the error correlation of the response is unknown at the design stage. In the literature, the maximin approach was proposed to tackle this problem. However, this is an expensive and time-consuming method, especially when the correlated noise follows high-order autoregressive models. The main focus of this dissertation is to develop an efficient approach to reduce the amount of the computational resources needed to obtain A-optimal designs for event-related fMRI experiments. One proposed idea is to combine the Kriging approximation method, which is widely used in spatial statistics and computer experiments with a knowledge-based genetic algorithm. Through case studies, a demonstration is made to show that the new search method achieves similar design efficiencies as those attained by the traditional method, but the new method gives a significant reduction in computing time. Another useful strategy is also proposed to find such designs by considering only the boundary points of the parameter space of the correlation parameters. The usefulness of this strategy is also demonstrated via case studies. The first part of this dissertation focuses on finding optimal event-related designs for fMRI with simple trials when each stimulus consists of only one component (e.g., a picture). The study is then extended to the case of compound trials when stimuli of multiple components (e.g., a cue followed by a picture) are considered.
Date Created
2019
Agent