Electrochemical Biosensors for Monitoring Complex Diseases and Comorbidities

156620-Thumbnail Image.png
Description
Monitoring complex diseases and their comorbidities requires accurate and convenient measurements of multiple biomarkers. However, many state-of-the-art bioassays not only require complicated and time-consuming procedures, but also measure only one biomarker at a time. This noncomprehensive single-biomarker monitoring, as well

Monitoring complex diseases and their comorbidities requires accurate and convenient measurements of multiple biomarkers. However, many state-of-the-art bioassays not only require complicated and time-consuming procedures, but also measure only one biomarker at a time. This noncomprehensive single-biomarker monitoring, as well as the cost and complexity of these bioassays advocate for a simple, rapid multi-marker sensing platform suitable for point-of-care or self-monitoring settings. To address this need, diabetes mellitus was selected as the example complex disease, with dry eye disease and cardiovascular disease as the example comorbidities. Seven vital biomarkers from these diseases were selected to investigate the platform technology: lactoferrin (Lfn), immunoglobulin E (IgE), insulin, glucose, lactate, low density lipoprotein (LDL), and high density lipoprotein (HDL). Using electrochemical techniques such as amperometry and electrochemical impedance spectroscopy (EIS), various single- and dual-marker sensing prototypes were studied. First, by focusing on the imaginary impedance of EIS, an analytical algorithm for the determination of optimal frequency and signal deconvolution was first developed. This algorithm helped overcome the challenge of signal overlapping in EIS multi-marker sensors, while providing a means to study the optimal frequency of a biomarker. The algorithm was then applied to develop various single- and dual-marker prototypes by exploring different kinds of molecular recognition elements (MRE) while studying the optimal frequencies of various biomarkers with respect to their biological properties. Throughout the exploration, 5 single-marker biosensors (glucose, lactate, insulin, IgE, and Lfn) and one dual-marker (LDL and HDL) biosensor were successfully developed. With the aid of nanoparticles and the engineering design of experiments, the zeta potential, conductivity, and molecular weight of a biomarker were found to be three example factors that contribute to a biomarker’s optimal frequency. The study platforms used in the study did not achieve dual-enzymatic marker biosensors (glucose and lactate) due to signal contamination from localized accumulation of reduced electron mediators on self-assembled monolayer. However, amperometric biosensors for glucose and lactate with disposable test strips and integrated samplers were successfully developed as a back-up solution to the multi-marker sensing platform. This work has resulted in twelve publications, five patents, and one submitted manuscripts at the time of submission.
Date Created
2018
Agent

Photoreactive and Electrochemical Properties of Vesicle Encapsulated Nanoparticles: Implications for Application in Retinal Stimulation

136352-Thumbnail Image.png
Description
Electrical stimulation has previously been effective in neural cells activation within retinas affected by degenerative retinal disease. However current technology has at most allowed blind individuals to perceive light without significant resolution, as implants are limited by the spatial constraints

Electrical stimulation has previously been effective in neural cells activation within retinas affected by degenerative retinal disease. However current technology has at most allowed blind individuals to perceive light without significant resolution, as implants are limited by the spatial constraints of the eye. Photoreactive nanoparticles may provide a solution to this issue, as their small size would allow for the incorporation of higher numbers of stimulatory elements, thus increasing visual resolution. Semiconductive nanocrystal quantum dots (QDs) and gold nanoparticles (AuNPs) both exhibit photoreactive properties which may result in sufficient electrical stimulation to activate neural cells in the retina. This study investigated the electrochemistry and photoreactivity of QDs and AuNPs encapsulated within the hydrophobic region of small unilamellar lipid vesicles (SUVs) to evaluate their potential for application in retinal stimulation. Absorbance of the constructs was evaluated on the day of fabrication and 24 hours later to determine the ability of the particles to react to light while encapsulated, as well as to evaluate stability of the construct over time. Electrical impedance spectroscopy (EIS) was conducted at both time points to determine the electrochemical character of the bilayer and further evaluate construct stability. Although quantum dots may increase the stability of the bilayer over time and improve its capacitative properties, lipid encapsulation appears to obscure the photoreactive properties of the quantum dots. In the case of gold nanoparticles, the construct is initially stabilized but deteriorates more quickly than those SUVs containing quantum dots, as evidenced by an increase in substrate diffusion. Additionally, although these constructs are more photoreactive than those containing QDs, the increase in absorbance is observed primarily in a range below that of the visible spectrum, a feature which is of limited use for the proposed application. Further studies should investigate alternative methods of nanoparticle capping to improve stability and absorbance in this system.
Date Created
2015-05
Agent

Towards a Hand-Held Multi-Biomarker Point-of-Care Diagnostic to Quantify Traumatic Brain Injury

155756-Thumbnail Image.png
Description
According to sources of the Centers for Disease Control and Prevention, approximately 1.7 million traumatic brain injury (TBI) cases occur annually in the United States. TBI results in 50 thousand deaths, nearly 300 thousand hospitalizations and 2.2 million emergency room

According to sources of the Centers for Disease Control and Prevention, approximately 1.7 million traumatic brain injury (TBI) cases occur annually in the United States. TBI results in 50 thousand deaths, nearly 300 thousand hospitalizations and 2.2 million emergency room visits causing a $76 billion economic burden in direct and indirect costs. Furthermore, it is estimated that over 5 million TBI survivors in the US are struggling with long-term disabilities. And yet, a point-of-care TBI diagnostic has not replaced the non-quantitative cognitive and physiological methods used today. Presently, pupil dilation and the Glasgow Coma Scale (GCS) are clinically used to diagnose TBI. However, GSC presents difficulties in detecting subtle patient changes, oftentimes leaving mild TBI undiagnosed. Given the long-term deficits associated with TBIs, a quantitative method that enables capturing of subtle and changing TBI pathologies is of great interest to the field.

The goal of this research is to work towards a test strip and meter point-of-care technology (similar to the glucose meter) that will quantify several TBI biomarkers in a drop of whole blood simultaneously. It is generally understood that measuring only one blood biomarker may not accurately diagnose TBI, thus this work lays the foundation to develop a multi-analyte approach to detect four promising TBI biomarkers: glial fibrillary acidic protein (GFAP), neuron specific enolase (NSE), S-100β protein, and tumor necrosis factor-α (TNF-α). To achieve this, each biomarker was individually assessed and modeled using sensitive and label-free electrochemical impedance techniques first in purified, then in blood solutions using standard electrochemical electrodes. Next, the biomarkers were individually characterized using novel mesoporous carbon electrode materials to facilitate detection in blood solutions and compared to the commercial standard Nafion coating. Finally, the feasibility of measuring these biomarkers in the same sample simultaneously was explored in purified and blood solutions. This work shows that a handheld TBI blood diagnostic is feasible if the electronics can be miniaturized and large quantity production of these sensors can be achieved.
Date Created
2017
Agent

Synthesis, characterizations and applications of mesoporous carbon composites

151266-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous

This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method and pore size distribution has been calculated by Kelvin equation based on toluene adsorption and desorption isotherms monitored by Ellipsometer. The addition of organometallics cobalt and vanalyl acetylacetonate in the synthesis precursor leads to the metal oxides in the carbon framework, which largely decreased the shrink of the framework during carbonization, resulting in an increase in the average pore size. In addition to the structural changes, the introduction of metal oxides into mesoporous carbon framework greatly enhances the electrochemical performance as a result of their pseudocapacitance. Also, after the addition of Co into the framework, the contraction of mesoporous powders decreased significantly and the capacitance increased prominently because of the solidification function of CoO nanoparticles. When carbon-cobalt composites are used as adsorbent, the adsorption capacity of dye pollutant in water is remarkably higher (90 mg/g) after adding Co than the mesoporous carbon powder (2 mg/g). Furthermore, the surface area and pore size of mesoporous composites can be greatly increased by addition of tetraethyl orthosilicate into the precursor with subsequent etching, which leads to a dramatic increase in the adsorption capacity from 90 mg/g up to 1151 mg/g. When used as electrode materials for amperometric biosensors, mesoporous carbons showed good sensitivity, selectivity and stability. And fluorine-free and low-cost poly (methacrylate)s have been developed as binders for screen printed biosensors. With using only 5wt% of poly (hydroxybutyl methacrylate), the glucose sensor maintained mechanical integrity and exhibited excellent sensitivity on detecting glucose level in whole rabbit blood. Furthermore, extremely high surface area mesoporous carbons have been synthesized by introducing inorganic Si precursor during self-assembly, which effectively determined norepinephrine at very low concentrations.
Date Created
2012
Agent

A multiplexing immunosensor for the quantification of cytokine biomarkers

151239-Thumbnail Image.png
Description
Biosensors offer excellent diagnostic methods through precise quantification of bodily fluid biomarkers and could fill an important niche in diagnostic screening. The long term goal of this research is the development of an impedance immunosensor for easy-to-use, rapid, sensitive and

Biosensors offer excellent diagnostic methods through precise quantification of bodily fluid biomarkers and could fill an important niche in diagnostic screening. The long term goal of this research is the development of an impedance immunosensor for easy-to-use, rapid, sensitive and selective simultaneously multiplexed quantification of bodily fluid disease biomarkers. To test the hypothesis that various cytokines induce empirically determinable response frequencies when captured by printed circuit board (PCB) impedance immunosensor surface, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods were used to test PCB biosensors versus multiple cytokine biomarkers to determine limits of detection, background interaction and response at all sweep frequencies. Results indicated that sensors for cytokine Interleukin-12 (IL-12) detected their target over three decades of concentration and were tolerant to high levels of background protein. Further, the hypothesis that cytokine analytes may be rapidly detected via constant frequency impedance immunosensing without sacrificing undue sensitivity, CV, EIS, impedance-time (Zt) methods and modeling were used to test CHITM gold electrodes versus IL-12 over different lengths of time to determine limits of detection, detection time, frequency of response and consistent cross-platform sensor performance. Modeling and Zt studies indicate interrogation of the electrode with optimum frequency could be used for detection of different target concentrations within 90 seconds of sensor exposure and that interrogating the immunosensor with fixed, optimum frequency could be used for sensing target antigen. This informs usability of fixed-frequency impedance methods for biosensor research and particularly for clinical biosensor use. Finally, a multiplexing impedance immunosensor prototype for quantification of biomarkers in various body fluids was designed for increased automation of sample handling and testing. This enables variability due to exogenous factors and increased rapidity of assay with eased sensor fabrication. Methods were provided for simultaneous multiplexing through multisine perturbation of a sensor, and subsequent data processing. This demonstrated ways to observe multiple types of antibody-antigen affinity binding events in real time, reducing the number of sensors and target sample used in the detection and quantification of multiple biomarkers. These features would also improve the suitability of the sensor for clinical multiplex detection of disease biomarkers.
Date Created
2012
Agent