Identity authentication and near field device authentication for smart devices

152874-Thumbnail Image.png
Description
The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password

The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In the meantime, there are emerging demands for new types of authentication. Proximity authentication is an example, which is not needed for computers but quite necessary for smart devices. These challenges motivate me to study and develop novel authentication mechanisms specific for smart devices.

In this dissertation, I am interested in the special authentication demands of smart devices and about to satisfy the demands. First, I study how the features of smart devices affect user identity authentications. For identity authentication domain, I aim to design a continuous, forge-resistant authentication mechanism that does not interrupt user-device interactions. I propose a mechanism that authenticates user identity based on the user's finger movement patterns. Next, I study a smart-device-specific authentication, proximity authentication, which authenticates whether two devices are in close proximity. For prox- imity authentication domain, I aim to design a user-friendly authentication mechanism that can defend against relay attacks. In addition, I restrict the authenticated distance to the scale of near field, i.e., a few centimeters. My first design utilizes a user's coherent two-finger movement on smart device screen to restrict the distance. To achieve a fully-automated system, I explore acoustic communications and propose a novel near field authentication system.
Date Created
2014
Agent

Infinite cacheflow: a rule-caching solution for software defined networks

152849-Thumbnail Image.png
Description
New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching solutions, neither individual rules are cached (to respect rule dependencies) nor compressed (to preserve the per-rule traffic counts). Instead long dependency chains are ``spliced'' to cache smaller groups of rules while preserving the semantics of the network policy. The proposed hybrid switch design satisfies three criteria: (1) responsiveness, to allow rapid changes to the cache with minimal effect on traffic throughput; (2) transparency, to faithfully support native OpenFlow semantics; (3) correctness, to cache rules while preserving the semantics of the original policy. The evaluation of the hybrid switch on large rule tables suggest that it can effectively expose the benefits of both hardware and software switches to the controller and to applications running on top of it.
Date Created
2014
Agent

Resource allocation in communication and social networks

152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
Date Created
2014
Agent

Routing and scheduling of electric and alternative-fuel vehicles

152456-Thumbnail Image.png
Description
Vehicles powered by electricity and alternative-fuels are becoming a more popular form of transportation since they have less of an environmental impact than standard gasoline vehicles. Unfortunately, their success is currently inhibited by the sparseness of locations where the vehicles

Vehicles powered by electricity and alternative-fuels are becoming a more popular form of transportation since they have less of an environmental impact than standard gasoline vehicles. Unfortunately, their success is currently inhibited by the sparseness of locations where the vehicles can refuel as well as the fact that many of the vehicles have a range that is less than those powered by gasoline. These factors together create a "range anxiety" in drivers, which causes the drivers to worry about the utility of alternative-fuel and electric vehicles and makes them less likely to purchase these vehicles. For the new vehicle technologies to thrive it is critical that range anxiety is minimized and performance is increased as much as possible through proper routing and scheduling. In the case of long distance trips taken by individual vehicles, the routes must be chosen such that the vehicles take the shortest routes while not running out of fuel on the trip. When many vehicles are to be routed during the day, if the refueling stations have limited capacity then care must be taken to avoid having too many vehicles arrive at the stations at any time. If the vehicles that will need to be routed in the future are unknown then this problem is stochastic. For fleets of vehicles serving scheduled operations, switching to alternative-fuels requires ensuring the schedules do not cause the vehicles to run out of fuel. This is especially problematic since the locations where the vehicles may refuel are limited due to the technology being new. This dissertation covers three related optimization problems: routing a single electric or alternative-fuel vehicle on a long distance trip, routing many electric vehicles in a network where the stations have limited capacity and the arrivals into the system are stochastic, and scheduling fleets of electric or alternative-fuel vehicles with limited locations to refuel. Different algorithms are proposed to solve each of the three problems, of which some are exact and some are heuristic. The algorithms are tested on both random data and data relating to the State of Arizona.
Date Created
2014
Agent

Compiler and runtime for memory management on software managed manycore processors

152415-Thumbnail Image.png
Description
We are expecting hundreds of cores per chip in the near future. However, scaling the memory architecture in manycore architectures becomes a major challenge. Cache coherence provides a single image of memory at any time in execution to all the

We are expecting hundreds of cores per chip in the near future. However, scaling the memory architecture in manycore architectures becomes a major challenge. Cache coherence provides a single image of memory at any time in execution to all the cores, yet coherent cache architectures are believed will not scale to hundreds and thousands of cores. In addition, caches and coherence logic already take 20-50% of the total power consumption of the processor and 30-60% of die area. Therefore, a more scalable architecture is needed for manycore architectures. Software Managed Manycore (SMM) architectures emerge as a solution. They have scalable memory design in which each core has direct access to only its local scratchpad memory, and any data transfers to/from other memories must be done explicitly in the application using Direct Memory Access (DMA) commands. Lack of automatic memory management in the hardware makes such architectures extremely power-efficient, but they also become difficult to program. If the code/data of the task mapped onto a core cannot fit in the local scratchpad memory, then DMA calls must be added to bring in the code/data before it is required, and it may need to be evicted after its use. However, doing this adds a lot of complexity to the programmer's job. Now programmers must worry about data management, on top of worrying about the functional correctness of the program - which is already quite complex. This dissertation presents a comprehensive compiler and runtime integration to automatically manage the code and data of each task in the limited local memory of the core. We firstly developed a Complete Circular Stack Management. It manages stack frames between the local memory and the main memory, and addresses the stack pointer problem as well. Though it works, we found we could further optimize the management for most cases. Thus a Smart Stack Data Management (SSDM) is provided. In this work, we formulate the stack data management problem and propose a greedy algorithm for the same. Later on, we propose a general cost estimation algorithm, based on which CMSM heuristic for code mapping problem is developed. Finally, heap data is dynamic in nature and therefore it is hard to manage it. We provide two schemes to manage unlimited amount of heap data in constant sized region in the local memory. In addition to those separate schemes for different kinds of data, we also provide a memory partition methodology.
Date Created
2014
Agent

Detection of advanced bots in smartphones through user profiling

152385-Thumbnail Image.png
Description
This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the user to the presence of the bot. A profile is constructed for each user based on the regular web usage patterns (achieved by intercepting the http(s) traffic) and implementing machine learning techniques to continuously learn the user's behavior and changes in the behavior and all the while looking for any anomalies in the user behavior above a threshold which will cause the user to be notified of the anomalous traffic. A prototype bot which uses OSN s as C&C; channel is constructed and used for testing. Users are given smartphones(Nexus 4 and Galaxy Nexus) running Application proxy which intercepts http(s) traffic and relay it to a server which uses the traffic and constructs the model for a particular user and look for any signs of anomalies. This approach lays the groundwork for the future host-based counter measures for smartphone botnets using OSN s as C&C; channel.
Date Created
2013
Agent

Capacity limit, link scheduling and power control in wireless networks

152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
Date Created
2013
Agent

Coping with selfish behavior in networks using game theory

152082-Thumbnail Image.png
Description
While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.
Date Created
2013
Agent

Security and privacy in heterogeneous wireless and mobile networks: challenges and solutions

151982-Thumbnail Image.png
Description
The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.
Date Created
2013
Agent

Structured sparse learning and its applications to biomedical and biological data

151689-Thumbnail Image.png
Description
Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.
Date Created
2013
Agent