Learning Sparse Representations for Fruit-Fly Gene Expression Pattern Image Annotation and Retrieval

130363-Thumbnail Image.png
Description
Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.
Date Created
2012-05-23
Agent

Image-level and group-level models for Drosophila gene expression pattern annotation

130364-Thumbnail Image.png
Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
Date Created
2013-12-03
Agent

Structured sparse learning and its applications to biomedical and biological data

151689-Thumbnail Image.png
Description
Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.
Date Created
2013
Agent