Co-simulation of Cyber-Physical Systems Using DEVS and Functional Mockup Units

161251-Thumbnail Image.png
Description
Cyber-Physical Systems (CPS) are becoming increasingly prevalent around the world. Co-simulation of cyber and physical components has shown to be an effective way towards the development of time-sensitive and reliable CPS. Correctly combining continuous models with discrete models for co-simulation

Cyber-Physical Systems (CPS) are becoming increasingly prevalent around the world. Co-simulation of cyber and physical components has shown to be an effective way towards the development of time-sensitive and reliable CPS. Correctly combining continuous models with discrete models for co-simulation can often be challenging. In this thesis, the Functional Markup Interface (FMI) is used to develop an adapter called DEVS-FMI for the DEVS-Suite simulator. The adapter, implemented using JavaFMI 2.0, allows any Functional Mock-Up Unit (FMU) to be co-simulated with a Discrete Event System Specification (DEVS) model. This approach enables taking advantage of the parallel DEVS formalism to model cyber systems and using Modelica to model physical systems. An FMU serves as a slave simulator while the DEVS-Suite serves as a master simulator. The Four-Variable model is used as a guide to define the requirements for the inputs and outputs of actuator and sensor devices used in cyber and physical systems. The input and output data as non-functional abstractions of the sensor and actuator devices. Select cyber and physical parts of an electric scooter are chosen, modeled, simulated, and evaluated using the integrated OpenModelica and the DEVS-Suite simulators. Closely related research is briefly examined and expanding this work with support for implicit state-changes for continuous models and distributed co-simulation is noted.
Date Created
2021
Agent

The What, When, and How of Strategic Movement in Adversarial Settings: A Syncretic View of AI and Security

158720-Thumbnail Image.png
Description
The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of modern-day software, it is difficult to ensure that all known

The field of cyber-defenses has played catch-up in the cat-and-mouse game of finding vulnerabilities followed by the invention of patches to defend against them. With the complexity and scale of modern-day software, it is difficult to ensure that all known vulnerabilities are patched; moreover, the attacker, with reconnaissance on their side, will eventually discover and leverage them. To take away the attacker's inherent advantage of reconnaissance, researchers have proposed the notion of proactive defenses such as Moving Target Defense (MTD) in cyber-security. In this thesis, I make three key contributions that help to improve the effectiveness of MTD.

First, I argue that naive movement strategies for MTD systems, designed based on intuition, are detrimental to both security and performance. To answer the question of how to move, I (1) model MTD as a leader-follower game and formally characterize the notion of optimal movement strategies, (2) leverage expert-curated public data and formal representation methods used in cyber-security to obtain parameters of the game, and (3) propose optimization methods to infer strategies at Strong Stackelberg Equilibrium, addressing issues pertaining to scalability and switching costs. Second, when one cannot readily obtain the parameters of the game-theoretic model but can interact with a system, I propose a novel multi-agent reinforcement learning approach that finds the optimal movement strategy. Third, I investigate the novel use of MTD in three domains-- cyber-deception, machine learning, and critical infrastructure networks. I show that the question of what to move poses non-trivial challenges in these domains. To address them, I propose methods for patch-set selection in the deployment of honey-patches, characterize the notion of differential immunity in deep neural networks, and develop optimization problems that guarantee differential immunity for dynamic sensor placement in power-networks.
Date Created
2020
Agent

Security and Usability in Mobile and IoT Systems

158606-Thumbnail Image.png
Description
Mobile and Internet-of-Things (IoT) systems have been widely used in many aspects

of human’s life. These systems are storing and operating on more and more sensitive

data of users. Attackers may want to obtain the data to peek at users’ privacy or

pollute

Mobile and Internet-of-Things (IoT) systems have been widely used in many aspects

of human’s life. These systems are storing and operating on more and more sensitive

data of users. Attackers may want to obtain the data to peek at users’ privacy or

pollute the data to cause system malfunction. In addition, these systems are not

user-friendly for some people such as children, senior citizens, and visually impaired

users. Therefore, it is of cardinal significance to improve both security and usability

of mobile and IoT systems. This report consists of four parts: one automatic locking

system for mobile devices, one systematic study of security issues in crowdsourced

indoor positioning systems, one usable indoor navigation system, and practical attacks

on home alarm IoT systems.

Chapter 1 overviews the challenges and existing solutions in these areas. Chapater

2 introduces a novel system ilock which can automatically and immediately lock the

mobile devices to prevent data theft. Chapter 3 proposes attacks and countermeasures

for crowdsourced indoor positioning systems. Chapter 4 presents a context-aware indoor

navigation system which is more user-friendly for visual impaired people. Chapter

5 investigates some novel attacks on commercial home alarm systems. Chapter 6

concludes the report and discuss the future work.
Date Created
2020
Agent

Understanding Disinformation: Learning with Weak Social Supervision

158566-Thumbnail Image.png
Description
Social media has become an important means of user-centered information sharing and communications in a gamut of domains, including news consumption, entertainment, marketing, public relations, and many more. The low cost, easy access, and rapid dissemination of information on social

Social media has become an important means of user-centered information sharing and communications in a gamut of domains, including news consumption, entertainment, marketing, public relations, and many more. The low cost, easy access, and rapid dissemination of information on social media draws a large audience but also exacerbate the wide propagation of disinformation including fake news, i.e., news with intentionally false information. Disinformation on social media is growing fast in volume and can have detrimental societal effects. Despite the importance of this problem, our understanding of disinformation in social media is still limited. Recent advancements of computational approaches on detecting disinformation and fake news have shown some early promising results. Novel challenges are still abundant due to its complexity, diversity, dynamics, multi-modality, and costs of fact-checking or annotation.

Social media data opens the door to interdisciplinary research and allows one to collectively study large-scale human behaviors otherwise impossible. For example, user engagements over information such as news articles, including posting about, commenting on, or recommending the news on social media, contain abundant rich information. Since social media data is big, incomplete, noisy, unstructured, with abundant social relations, solely relying on user engagements can be sensitive to noisy user feedback. To alleviate the problem of limited labeled data, it is important to combine contents and this new (but weak) type of information as supervision signals, i.e., weak social supervision, to advance fake news detection.

The goal of this dissertation is to understand disinformation by proposing and exploiting weak social supervision for learning with little labeled data and effectively detect disinformation via innovative research and novel computational methods. In particular, I investigate learning with weak social supervision for understanding disinformation with the following computational tasks: bringing the heterogeneous social context as auxiliary information for effective fake news detection; discovering explanations of fake news from social media for explainable fake news detection; modeling multi-source of weak social supervision for early fake news detection; and transferring knowledge across domains with adversarial machine learning for cross-domain fake news detection. The findings of the dissertation significantly expand the boundaries of disinformation research and establish a novel paradigm of learning with weak social supervision that has important implications in broad applications in social media.
Date Created
2020
Agent

Poincare Embeddings for Visualizing Eigenvector Centrality

158548-Thumbnail Image.png
Description
Hyperbolic geometry, which is a geometry which concerns itself with hyperbolic space, has caught the eye of certain circles in the machine learning community as of late. Lauded for its ability to encapsulate strong clustering as well as latent hierarchies

Hyperbolic geometry, which is a geometry which concerns itself with hyperbolic space, has caught the eye of certain circles in the machine learning community as of late. Lauded for its ability to encapsulate strong clustering as well as latent hierarchies in complex and social networks, hyperbolic geometry has proven itself to be an enduring presence in the network science community throughout the 2010s, with no signs of fading into obscurity anytime soon. Hyperbolic embeddings, which map a given graph to hyperbolic space, have particularly proven to be a powerful and dynamic tool for studying complex networks. Hyperbolic embeddings are exploited in this thesis to illustrate centrality in a graph. In network science, centrality quantifies the influence of individual nodes in a graph. Eigenvector centrality is one type of such measure, and assigns an influence weight to each node in a graph by solving for an eigenvector equation. A procedure is defined to embed a given network in a model of hyperbolic space, known as the Poincare disk, according to the influence weights computed by three eigenvector centrality measures: the PageRank algorithm, the Hyperlink-Induced Topic Search (HITS) algorithm, and the Pinski-Narin algorithm. The resulting embeddings are shown to accurately and meaningfully reflect each node's influence and proximity to influential nodes.
Date Created
2020
Agent

Types of Bots: Categorization of Accounts Using Unsupervised Machine Learning

Description
Social media bot detection has been a signature challenge in recent years in online social networks. Many scholars agree that the bot detection problem has become an "arms race" between malicious actors, who seek to create bots to influence opinion

Social media bot detection has been a signature challenge in recent years in online social networks. Many scholars agree that the bot detection problem has become an "arms race" between malicious actors, who seek to create bots to influence opinion on these networks, and the social media platforms to remove these accounts. Despite this acknowledged issue, bot presence continues to remain on social media networks. So, it has now become necessary to monitor different bots over time to identify changes in their activities or domain. Since monitoring individual accounts is not feasible, because the bots may get suspended or deleted, bots should be observed in smaller groups, based on their characteristics, as types. Yet, most of the existing research on social media bot detection is focused on labeling bot accounts by only distinguishing them from human accounts and may ignore differences between individual bot accounts. The consideration of these bots' types may be the best solution for researchers and social media companies alike as it is in both of their best interests to study these types separately. However, up until this point, bot categorization has only been theorized or done manually. Thus, the goal of this research is to automate this process of grouping bots by their respective types. To accomplish this goal, the author experimentally demonstrates that it is possible to use unsupervised machine learning to categorize bots into types based on the proposed typology by creating an aggregated dataset, subsequent to determining that the accounts within are bots, and utilizing an existing typology for bots. Having the ability to differentiate between types of bots automatically will allow social media experts to analyze bot activity, from a new perspective, on a more granular level. This way, researchers can identify patterns related to a given bot type's behaviors over time and determine if certain detection methods are more viable for that type.
Date Created
2019
Agent

Learning with attributed networks: algorithms and applications

157589-Thumbnail Image.png
Description
Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the

Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast amounts of data that can be structured into attributed networks, and their use has been attractive to researchers and practitioners in different disciplines. For example, in social media, users interact with each other and also post personalized content; in scientific collaboration, researchers cooperate and are distinct from peers by their unique research interests; in complex diseases studies, rich gene expression complements to the gene-regulatory networks. Clearly, attributed networks are ubiquitous and form a critical component of modern information infrastructure. To gain deep insights from such networks, it requires a fundamental understanding of their unique characteristics and be aware of the related computational challenges.

My dissertation research aims to develop a suite of novel learning algorithms to understand, characterize, and gain actionable insights from attributed networks, to benefit high-impact real-world applications. In the first part of this dissertation, I mainly focus on developing learning algorithms for attributed networks in a static environment at two different levels: (i) attribute level - by designing feature selection algorithms to find high-quality features that are tightly correlated with the network topology; and (ii) node level - by presenting network embedding algorithms to learn discriminative node embeddings by preserving node proximity w.r.t. network topology structure and node attribute similarity. As changes are essential components of attributed networks and the results of learning algorithms will become stale over time, in the second part of this dissertation, I propose a family of online algorithms for attributed networks in a dynamic environment to continuously update the learning results on the fly. In fact, developing application-aware learning algorithms is more desired with a clear understanding of the application domains and their unique intents. As such, in the third part of this dissertation, I am also committed to advancing real-world applications on attributed networks by incorporating the objectives of external tasks into the learning process.
Date Created
2019
Agent

Smart resource allocation in internet-of-things: perspectives of network, security, and economics

157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices.

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
Date Created
2019
Agent

Multiobjective Optimization Based Approach for Truth Discovery

157416-Thumbnail Image.png
Description
There are many applications where the truth is unknown. The truth values are

guessed by different sources. The values of different properties can be obtained from

various sources. These will lead to the disagreement in sources. An important task

is to obtain the

There are many applications where the truth is unknown. The truth values are

guessed by different sources. The values of different properties can be obtained from

various sources. These will lead to the disagreement in sources. An important task

is to obtain the truth from these sometimes contradictory sources. In the extension

of computing the truth, the reliability of sources needs to be computed. There are

models which compute the precision values. In those earlier models Banerjee et al.

(2005) Dong and Naumann (2009) Kasneci et al. (2011) Li et al. (2012) Marian and

Wu (2011) Zhao and Han (2012) Zhao et al. (2012), multiple properties are modeled

individually. In one of the existing works, the heterogeneous properties are modeled in

a joined way. In that work, the framework i.e. Conflict Resolution on Heterogeneous

Data (CRH) framework is based on the single objective optimization. Due to the

single objective optimization and non-convex optimization problem, only one local

optimal solution is found. As this is a non-convex optimization problem, the optimal

point depends upon the initial point. This single objective optimization problem is

converted into a multi-objective optimization problem. Due to the multi-objective

optimization problem, the Pareto optimal points are computed. In an extension of

that, the single objective optimization problem is solved with numerous initial points.

The above two approaches are used for finding the solution better than the solution

obtained in the CRH with median as the initial point for the continuous variables and

majority voting as the initial point for the categorical variables. In the experiments,

the solution, coming from the CRH, lies in the Pareto optimal points of the multiobjective

optimization and the solution coming from the CRH is the optimum solution

in these experiments.
Date Created
2019
Agent

Designing a Software Platform for Evaluating Cyber-Attacks on The Electric PowerGrid

157375-Thumbnail Image.png
Description
Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the

Energy management system (EMS) is at the heart of the operation and control of a modern electrical grid. Because of economic, safety, and security reasons, access to industrial grade EMS and real-world power system data is extremely limited. Therefore, the ability to simulate an EMS is invaluable in researching the EMS in normal and anomalous operating conditions.

I first lay the groundwork for a basic EMS loop simulation in modern power grids and review a class of cybersecurity threats called false data injection (FDI) attacks. Then I propose a software architecture as the basis of software simulation of the EMS loop and explain an actual software platform built using the proposed architecture. I also explain in detail the power analysis libraries used for building the platform with examples and illustrations from the implemented application. Finally, I will use the platform to simulate FDI attacks on two synthetic power system test cases and analyze and visualize the consequences using the capabilities built into the platform.
Date Created
2019
Agent