Types of Bots: Categorization of Accounts Using Unsupervised Machine Learning

Description
Social media bot detection has been a signature challenge in recent years in online social networks. Many scholars agree that the bot detection problem has become an "arms race" between malicious actors, who seek to create bots to influence opinion

Social media bot detection has been a signature challenge in recent years in online social networks. Many scholars agree that the bot detection problem has become an "arms race" between malicious actors, who seek to create bots to influence opinion on these networks, and the social media platforms to remove these accounts. Despite this acknowledged issue, bot presence continues to remain on social media networks. So, it has now become necessary to monitor different bots over time to identify changes in their activities or domain. Since monitoring individual accounts is not feasible, because the bots may get suspended or deleted, bots should be observed in smaller groups, based on their characteristics, as types. Yet, most of the existing research on social media bot detection is focused on labeling bot accounts by only distinguishing them from human accounts and may ignore differences between individual bot accounts. The consideration of these bots' types may be the best solution for researchers and social media companies alike as it is in both of their best interests to study these types separately. However, up until this point, bot categorization has only been theorized or done manually. Thus, the goal of this research is to automate this process of grouping bots by their respective types. To accomplish this goal, the author experimentally demonstrates that it is possible to use unsupervised machine learning to categorize bots into types based on the proposed typology by creating an aggregated dataset, subsequent to determining that the accounts within are bots, and utilizing an existing typology for bots. Having the ability to differentiate between types of bots automatically will allow social media experts to analyze bot activity, from a new perspective, on a more granular level. This way, researchers can identify patterns related to a given bot type's behaviors over time and determine if certain detection methods are more viable for that type.
Date Created
2019
Agent

Analysis of BoostOR: A Twitter Bot Detection Classification Algorithm

133143-Thumbnail Image.png
Description
The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have

The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as well. These bots cause problems such as preventing rescuers from determining credible calls for help, spreading fake news and other malicious content, and generating large amounts of content which burdens rescuers attempting to provide aid in the aftermath of disasters. To address these problems, this research seeks to detect bots participating in disaster event related discussions and increase the recall, or number of bots removed from the network, of Twitter bot detection methods. The removal of these bots will also prevent human users from accidentally interacting with these bot accounts and being manipulated by them. To accomplish this goal, an existing bot detection classification algorithm known as BoostOR was employed. BoostOR is an ensemble learning algorithm originally modeled to increase bot detection recall in a dataset and it has the possibility to solve the social media bot dilemma where there may be several different types of bots in the data. BoostOR was first introduced as an adjustment to existing ensemble classifiers to increase recall. However, after testing the BoostOR algorithm on unobserved datasets, results showed that BoostOR does not perform as expected. This study attempts to improve the BoostOR algorithm by comparing it with a baseline classification algorithm, AdaBoost, and then discussing the intentional differences between the two. Additionally, this study presents the main factors which contribute to the shortcomings of the BoostOR algorithm and proposes a solution to improve it. These recommendations should ensure that the BoostOR algorithm can be applied to new and unobserved datasets in the future.
Date Created
2018-12
Agent