Description
The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as well. These bots cause problems such as preventing rescuers from determining credible calls for help, spreading fake news and other malicious content, and generating large amounts of content which burdens rescuers attempting to provide aid in the aftermath of disasters. To address these problems, this research seeks to detect bots participating in disaster event related discussions and increase the recall, or number of bots removed from the network, of Twitter bot detection methods. The removal of these bots will also prevent human users from accidentally interacting with these bot accounts and being manipulated by them. To accomplish this goal, an existing bot detection classification algorithm known as BoostOR was employed. BoostOR is an ensemble learning algorithm originally modeled to increase bot detection recall in a dataset and it has the possibility to solve the social media bot dilemma where there may be several different types of bots in the data. BoostOR was first introduced as an adjustment to existing ensemble classifiers to increase recall. However, after testing the BoostOR algorithm on unobserved datasets, results showed that BoostOR does not perform as expected. This study attempts to improve the BoostOR algorithm by comparing it with a baseline classification algorithm, AdaBoost, and then discussing the intentional differences between the two. Additionally, this study presents the main factors which contribute to the shortcomings of the BoostOR algorithm and proposes a solution to improve it. These recommendations should ensure that the BoostOR algorithm can be applied to new and unobserved datasets in the future.
Download count: 1
Details
Title
- Analysis of BoostOR: A Twitter Bot Detection Classification Algorithm
Contributors
- Davis, Matthew William (Author)
- Liu, Huan (Thesis director)
- Nazer, Tahora H. (Committee member)
- Computer Science and Engineering Program (Contributor, Contributor)
- Department of Information Systems (Contributor)
- Barrett, The Honors College (Contributor)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018-12
Resource Type
Collections this item is in