Deciphering the Role of Cortical Astrocytes in the Pathogenesis of C9orf72-Mediated ALS/FTD: Insights From a Patient-Derived In Vitro Model

189241-Thumbnail Image.png
Description
The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed

The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed that ALS and FTD reside along a spectrum with clinical and pathological commonalities. Historically understood as diseases resulting in neuronal death, the role of non-neuronal cells like astrocytes is still wholly unresolved. With evidence of cortical neurodegeneration leading to cognitive impairments in C9orf72-ALS/FTD, there is a need to investigate the role of cortical astrocytes in this disease spectrum. Here, a patient-derived induced pluripotent stem cell (iPSC) cortical astrocyte model was developed to investigate consequences of C9orf72-HRE pathogenic features in this cell type. Although there were no significant C9orf72-HRE pathogenic features in cortical astrocytes, transcriptomic, proteomic and phosphoproteomic profiles elucidated global disease-related phenotypes. Specifically, aberrant expression of astrocytic-synapse proteins and secreted factors were identified. SPARCL1, a pro-synaptogenic secreted astrocyte factor was found to be selectively decreased in C9orf72-ALS/FTD iPSC-cortical astrocytes. This finding was further validated in human tissue analyses, indicating that cortical astrocytes in C9orf72-ALS/FTD exhibit a reactive transformation that is characterized by a decrease in SPARCL1 expression. Considering the evidence for substantial astrogliosis and synaptic failure leading to cognitive impairments in C9orf72-ALS/FTD, these findings represent a novel understanding of how cortical astrocytes may contribute to the cortical neurodegeneration in this disease spectrum.
Date Created
2023
Agent

In Pursuit of Specificity: Therapeutic Targeting of HDAC1 in Glioblastoma

168823-Thumbnail Image.png
Description
Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are

Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the last decade there has been considerable interest in using HDAC inhibitors (HDACi) for the treatment of malignant primary brain tumors. However, to date most HDACi tested in clinical trials have failed to provide significant therapeutic benefit to patients with GBM. This is because current HDACi have poor or unknown pharmacokinetic profiles, lack selectivity towards the different HDAC isoforms, and have narrow therapeutic windows. Isoform selectivity for HDACi is important given that broad inhibition of all HDACs results in widespread toxicity across different organs. Moreover, the functional roles of individual HDAC isoforms in GBM are still not well understood. Here, I demonstrate that HDAC1 expression increases with brain tumor grade and is correlated with decreased survival in GBM. I find that HDAC1 is the essential HDAC isoform in glioma stem cells and its loss is not compensated for by its paralogue HDAC2 or other members of the HDAC family. Loss of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner and leads to significant suppression of tumor growth in vivo. While no HDAC isoform-selective inhibitors are currently available, the second-generation HDACi quisinostat harbors high specificity for HDAC1. I show that quisinostat exhibits potent growth inhibition in multiple patient-derived glioma stem cells. Using a pharmacokinetics- and pharmacodynamics-driven approach, I demonstrate that quisinostat is a brain-penetrant molecule that reduces tumor burden in flank and orthotopic models of GBM and significantly extends survival both alone and in combination with radiotherapy. The work presented in this thesis thereby unveils the non-redundant functions of HDAC1 in therapy- resistant glioma stem cells and identifies a brain-penetrant HDACi with higher selectivity towards HDAC1 as a potent radiosensitizer in preclinical models of GBM. Together, these results provide a rationale for developing quisinostat as a potential adjuvant therapy for the treatment of GBM.
Date Created
2022
Agent

Investigating the Role of the Perivascular Niche on Glioma Stem Cell Invasion in a Three-Dimensional Microfluidic Tumor Microenvironment Model

Description
Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher

Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60 years. GBM Tumor formation can either begin as normal brain cells or develop from an existing low-grade astrocytoma and are housed by the perivascular niche in the brain microenvironment. This niche allows for the persistence of a population of cells known as glioma stem cells (GSC) by supplying optimum growth conditions that build chemoresistance and cause recurrence of the tumor within two to five years of treatment. It has therefore become imperative to understand the role of the perivascular niche on GSCs through in vitro modelling in order to improve the efficiency of therapeutic treatment and increase the survival rate of patients with GBM.

In this study, a unique three dimensional (3D) microfluidic platform that permitted the study of intercellular interactions between three different cell types in the perivascular niche of the brain was developed and utilized for the first time. Specifically, human endothelial cells were embedded in a fibrin matrix and introduced into the vascular layer of the microfluidic platform.

After spontaneous formation of a vascular layer, Normal Human Astrocytes and Patient derived GSC were embedded in a Matrigel® matrix and incorporated in the stroma and tumor regions of the microfluidic device respectively.

Using the established platform, migration, proliferation and stemness of GSCs studies were conducted. The findings obtained indicate that astrocytes in the perivascular niche significantly increase the migratory and proliferative properties of GSCs in the tumor microenvironment, consistent with previous in vivo findings.

The novel GBM tumor microenvironment developed herein, could be utilized for further

in-depth cellular and molecular level studies to dissect the influence of individual factors within the tumor niche on GSCs biology, and could serve as a model for developing targeted therapies.
Date Created
2020
Agent

Specific functions of ERK/MAPK signaling in brain development and neurocognition

157848-Thumbnail Image.png
Description
Development of the cerebral cortex requires the complex integration of extracellular stimuli to affect changes in gene expression. Trophic stimulation activates specialized intracellular signaling cascades to instruct processes necessary for the elaborate cellular diversity, architecture, and function of the cortex.

Development of the cerebral cortex requires the complex integration of extracellular stimuli to affect changes in gene expression. Trophic stimulation activates specialized intracellular signaling cascades to instruct processes necessary for the elaborate cellular diversity, architecture, and function of the cortex. The canonical RAS/RAF/MEK/ERK (ERK/MAPK) cascade is a ubiquitously expressed kinase pathway that regulates crucial aspects of neurodevelopment. Mutations in the ERK/MAPK pathway or its regulators give rise to neurodevelopmental syndromes termed the “RASopathies.” RASopathy individuals present with neurological symptoms that include intellectual disability, ADHD, and seizures. The precise cellular mechanisms that drive neurological impairments in RASopathy individuals remain unclear. In this thesis, I aimed to 1) address how RASopathy mutations affect neurodevelopment, 2) elucidate fundamental requirements of ERK/MAPK in GABAergic circuits, and 3) determine how aberrant ERK/MAPK signaling disrupts GABAergic development.

Here, I show that a Noonan Syndrome-linked gain-of-function mutation Raf1L613V, drives modest changes in astrocyte and oligodendrocyte progenitor cell (OPC) density in the mouse cortex and hippocampus. Raf1L613V mutant mice exhibited enhanced performance in hippocampal-dependent spatial reference and working memory and amygdala-dependent fear learning tasks. However, we observed normal perineuronal net (PNN) accumulation around mutant parvalbumin-expressing (PV) interneurons. Though PV-interneurons were minimally affected by the Raf1L613V mutation, other RASopathy mutations converge on aberrant GABAergic development as a mediator of neurological dysfunction.

I therefore hypothesized interneuron expression of the constitutively active Mek1S217/221E (caMek1) mutation would be sufficient to perturb GABAergic circuit development. Interestingly, the caMek1 mutation selectively disrupted crucial PV-interneuron developmental processes. During embryogenesis, I detected expression of cleaved-caspase 3 (CC3) in the medial ganglionic eminence (MGE). Interestingly, adult mutant cortices displayed a selective 50% reduction in PV-expressing interneurons, but not other interneuron subtypes. PV-interneuron loss was associated with seizure-like activity in mutants and coincided with reduced perisomatic synapses. Mature mutant PV-interneurons exhibited somal hypertrophy and a substantial increase in PNN accumulation. Aberrant GABAergic development culminated in reduced behavioral response inhibition, a process linked to ADHD-like behaviors. Collectively, these data provide insight into the mechanistic underpinnings of RASopathy neuropathology and suggest that modulation of GABAergic circuits may be an effective therapeutic option for RASopathy individuals.
Date Created
2019
Agent

Ketogenic Therapy as an Adjuvant for Malignant Glioma: Impacts on Anti-Tumor Immunity

156572-Thumbnail Image.png
Description
Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately 15 months. One novel therapeutic strategy involves using a ketogenic diet (KD)

Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately 15 months. One novel therapeutic strategy involves using a ketogenic diet (KD) which increases circulating ketones and reduces circulating glucose. While the preclinical work has shown that the KD increases survival, enhances radiation and alters several pathways in malignant gliomas, its impact on the anti-tumor immune response has yet to be examined. This dissertation demonstrates that mice fed the KD had increased tumor-reactive innate and adaptive immune responses, including increased cytokine production and cytolysis via tumor-reactive CD8+ T cells. Additionally, we saw that mice maintained on the KD had increased CD4 infiltration, while T regulatory cell numbers stayed consistent. Lastly, mice fed the KD had a significant reduction in immune inhibitory receptor expression as well as decreased inhibitory ligand expression on glioma cells, namely programmed death receptor -1 (PD-1) and its ligand programmed death receptor ligand -1 (PD-L1). Further, it is demonstrated that the ketone body beta-hydroxybutyrate (BHB) reduces expression of PD-L1 on glioma cells in vitro suggesting it may be responsible in part for immune-related changes elicited by the KD. Finally this dissertation also shows that the KD increases the expression of microRNAs predicted to target PD-L1 suggesting a potential mechanism to explain the ability of the KD to modulate immune inhibitory checkpoint pathways. Taken together these studies shed important light on the mechanisms underlying the KD and provide additional support for its use an adjuvant therapy for malignant glioma.
Date Created
2018
Agent

Engineering PNIPAAm Biomaterial Scaffolds to Model Microenvironmental Regulation of Glioblastoma Stem-Like Cells

155979-Thumbnail Image.png
Description
Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports

Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. Moreover, specialized niches within the tumor microenvironment maintain a population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation therapy and are likely responsible for near universal rates of tumor recurrence and associated morbidity. Thus, disrupting microenvironmental support for GSCs could be critical to more effective GBM therapies. Three-dimensional (3D) culture models of the tumor microenvironment are powerful tools for identifying key biochemical and biophysical inputs that may support or inhibit malignant behaviors. Here, we developed synthetic poly(N-isopropylacrylamide-co-Jeffamine M-1000® acrylamide) or PNJ copolymers as a model 3D system for culturing GBM cell lines and low-passage patient-derived GSCs in vitro. These temperature responsive scaffolds reversibly transition from soluble to insoluble in aqueous solution by heating from room temperature to body temperature, thereby enabling easy encapsulation and release of cells in a 3D scaffold. We also designed this system with the capacity for presenting the cell-adhesion peptide sequence RGD for adherent culture conditions. Using this system, we identified conditions that promoted GBM proliferation, invasion, GSC phenotypes, and radiation resistance. In particular, using two separate patient-derived GSC models, we observed that PNJ scaffolds regulated self-renewal, provided protection from radiation induced cell death, and may promote stem cell plasticity in response to radiation. Furthermore, PNJ scaffolds produced de novo activation of the transcription factor HIF2α, which is critical to GSC tumorigenicity and stem plasticity. All together, these studies establish the robust utility of PNJ biomaterials as in vitro models for studying microenvironmental regulation of GSC behaviors and treatment resistance.
Date Created
2017
Agent

Disarming Olig2: Targeting its partner protein Hdac1

134436-Thumbnail Image.png
Description
Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has

Glioblastoma is the most aggressive and lethal brain tumor, due to its resistance to current conventional therapy. The resistance to chemo- and radiotherapy has been attributed to a special population of cells known as glioma stem cells. Previous literature has shown the importance of a Central Nervous System-restricted transcription factor OLIG2 in maintaining the tumor-propagating potential of these glioma stem cells. OLIG2's function was further elucidated, with its pro-mitogenic function due to its ability to negatively regulate the p53 pathway by suppressing the acetylation of the p53 protein's C terminal domain. Past work in our lab has confirmed that one of OLIG2's partner proteins is Histone Deacetylase 1 (HDAC1). In vitro experiments have also shown that targeting HDAC1 using hairpin RNA in glioma stem cells negatively impacts proliferation. In a survival study using a murine glioma model, targeting Hdac1 using hairpin RNA is shown to reduce tumor burden and increase survival. In this paper, we demonstrate that silencing Hdac1 expression reduces proliferation, increases cell death, likely a result of increased acetylation of p53. Olig2 expression levels seem to be unaffected in GSCs, demonstrating that the Hdac1 protein ablation is indeed lethal to GSCs. This work builds upon previously collected results, confirming that Hdac1 is a potential surrogate target for Olig2's pro-mitotic function in regulating the p53 pathway.
Date Created
2017-05
Agent

Glioblastoma in the Crosshairs: Development of a Dual Reporter Assay for Discovery of Olig2 Inhibiting Drugs

137083-Thumbnail Image.png
Description
A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990,

A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory analysis is needed before the reporter cell line is ready for high-throughput screening at the NIH and lead compound selection.
Date Created
2014-05
Agent