Spectral Triples on a Non-standard Presentation of Effros-Shen AF Algebras

193620-Thumbnail Image.png
Description
The Effros-Shen algebra corresponding to an irrational number θ can be described by an inductive sequence of direct sums of matrix algebras, where the continued fraction expansion of θ encodes the dimensions of the summands, and how the matrix algebras

The Effros-Shen algebra corresponding to an irrational number θ can be described by an inductive sequence of direct sums of matrix algebras, where the continued fraction expansion of θ encodes the dimensions of the summands, and how the matrix algebras at the nth level fit into the summands at the (n+1)th level. In recent work, Mitscher and Spielberg present an Effros-Shen algebra as the C*-algebra of a category of paths -- a generalization of a directed graph -- determined by the continued fraction expansion of θ. With this approach, the algebra is realized as the inductive limit of a sequence of infinite-dimensional, rather than finite-dimensional, subalgebras. In this thesis, the author defines a spectral triple in terms of the category of paths presentation of an Effros-Shen algebra, drawing on a construction by Christensen and Ivan. This thesis describes categories of paths, the example of Mitscher and Spielberg, and the spectral triple construction.
Date Created
2024
Agent

On Criteria for Large Cyclotomic $\lambda$-invariants for Imaginary Quadratic Fields

187716-Thumbnail Image.png
Description
Iwasawa theory is a branch of number theory that studies the behavior of certain objects associated to a $\mathbb{Z}_p$-extension. We will focus our attention to the cyclotomic $\mathbb{Z}_p$-extensions of imaginary quadratic fields for varying primes p, and will give

Iwasawa theory is a branch of number theory that studies the behavior of certain objects associated to a $\mathbb{Z}_p$-extension. We will focus our attention to the cyclotomic $\mathbb{Z}_p$-extensions of imaginary quadratic fields for varying primes p, and will give some conditions for when the corresponding lambda-invariants are greater than 1.
Date Created
2023
Agent

Generalizations of the Signed Selmer Groups for Cyclotomic Extensions

187305-Thumbnail Image.png
Description
Let $E$ be an elliptic curve defined over a number field $K$, $p$ a rational prime, and $\Lambda(\Gamma)$ the Iwasawa module of the cyclotomic extension of $K$. A famous conjecture by Mazur states that the $p$-primary component of the Selmer

Let $E$ be an elliptic curve defined over a number field $K$, $p$ a rational prime, and $\Lambda(\Gamma)$ the Iwasawa module of the cyclotomic extension of $K$. A famous conjecture by Mazur states that the $p$-primary component of the Selmer group of $E$ is $\Lambda(\Gamma)$-cotorsion when $E$ has good ordinary reduction at all primes of $K$ lying over $p$. The conjecture was proven in the case that $K$ is the field of rationals by Kato, but is known to be false when $E$ has supersingular reduction type. To salvage this result, Kobayashi introduced the signed Selmer groups, which impose stronger local conditions than their classical counterparts. Part of the construction of the signed Selmer groups involves using Honda's theory of commutative formal groups to define a canonical system of points. In this paper I offer an alternate construction that appeals to the Functional Equation Lemma, and explore a possible way of generalizing this method to elliptic curves defined over $p$-adic fields by passing from formal group laws to formal modules.
Date Created
2023
Agent

Ultrametric Cantor Spaces as Infinite Rooted Trees

168757-Thumbnail Image.png
Description
Cantor sets are totally disconnected, compact, metrizable, and contain no isolated points. All Cantor sets are homeomorphic to each other, but the addition of the metric yields new properties which can be detected by their correspondence with the boundaries of infinite rooted trees.
Date Created
2022
Agent

Some Questions on Uniqueness and the Preservation of Structure for the Ricci Flow

161819-Thumbnail Image.png
Description
This thesis explores several questions concerning the preservation of geometric structure under the Ricci flow, an evolution equation for Riemannian metrics. Within the class of complete solutions with bounded curvature, short-time existence and uniqueness of solutions guarantee that symmetries and

This thesis explores several questions concerning the preservation of geometric structure under the Ricci flow, an evolution equation for Riemannian metrics. Within the class of complete solutions with bounded curvature, short-time existence and uniqueness of solutions guarantee that symmetries and many other geometric features are preserved along the flow. However, much less is known about the analytic and geometric properties of solutions of potentially unbounded curvature. The first part of this thesis contains a proof that the full holonomy group is preserved, up to isomorphism, forward and backward in time. The argument reduces the problem to the preservation of reduced holonomy via an analysis of the equation satisfied by parallel translation around a loop with respect to the evolving metric. The subsequent chapter examines solutions satisfying a certain instantaneous, but nonuniform, curvature bound, and shows that when such solutions split as a product initially, they will continue to split for all time. This problem is encoded as one of uniqueness for an auxiliary system constructed from a family of time-dependent, orthogonal distributions of the tangent bundle. The final section presents some details of an ongoing project concerning the uniqueness of asymptotically product gradient shrinking Ricci solitons, including the construction of a certain system of mixed differential inequalities which measures the extent to which such a soliton fails to split.
Date Created
2021
Agent

Weak measure-valued solutions to a nonlinear conservation law modeling a highly re-entrant manufacturing system

157588-Thumbnail Image.png
Description
The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the

The main part of this work establishes existence, uniqueness and regularity properties of measure-valued solutions of a nonlinear hyperbolic conservation law with non-local velocities. Major challenges stem from in- and out-fluxes containing nonzero pure-point parts which cause discontinuities of the velocities. This part is preceded, and motivated, by an extended study which proves that an associated optimal control problem has no optimal $L^1$-solutions that are supported on short time intervals.

The hyperbolic conservation law considered here is a well-established model for a highly re-entrant semiconductor manufacturing system. Prior work established well-posedness for $L^1$-controls and states, and existence of optimal solutions for $L^2$-controls, states, and control objectives. The results on measure-valued solutions presented here reduce to the existing literature in the case of initial state and in-flux being absolutely continuous measures. The surprising well-posedness (in the face of measures containing nonzero pure-point part and discontinuous velocities) is directly related to characteristic features of the model that capture the highly re-entrant nature of the semiconductor manufacturing system.

More specifically, the optimal control problem is to minimize an $L^1$-functional that measures the mismatch between actual and desired accumulated out-flux. The focus is on the transition between equilibria with eventually zero backlog. In the case of a step up to a larger equilibrium, the in-flux not only needs to increase to match the higher desired out-flux, but also needs to increase the mass in the factory and to make up for the backlog caused by an inverse response of the system. The optimality results obtained confirm the heuristic inference that the optimal solution should be an impulsive in-flux, but this is no longer in the space of $L^1$-controls.

The need for impulsive controls motivates the change of the setting from $L^1$-controls and states to controls and states that are Borel measures. The key strategy is to temporarily abandon the Eulerian point of view and first construct Lagrangian solutions. The final section proposes a notion of weak measure-valued solutions and proves existence and uniqueness of such.

In the case of the in-flux containing nonzero pure-point part, the weak solution cannot depend continuously on the time with respect to any norm. However, using semi-norms that are related to the flat norm, a weaker form of continuity of solutions with respect to time is proven. It is conjectured that also a similar weak continuous dependence on initial data holds with respect to a variant of the flat norm.
Date Created
2019
Agent

On K-derived quartics and invariants of local fields

Description
This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$, as do all of its derivatives. Such a polynomial

is

This dissertation will cover two topics. For the first, let $K$ be a number field. A $K$-derived polynomial $f(x) \in K[x]$ is a polynomial that

factors into linear factors over $K$, as do all of its derivatives. Such a polynomial

is said to be {\it proper} if

its roots are distinct. An unresolved question in the literature is

whether or not there exists a proper $\Q$-derived polynomial of degree 4. Some examples

are known of proper $K$-derived quartics for a quadratic number field $K$, although other

than $\Q(\sqrt{3})$, these fields have quite large discriminant. (The second known field

is $\Q(\sqrt{3441})$.) I will describe a search for quadratic fields $K$

over which there exist proper $K$-derived quartics. The search finds examples for

$K=\Q(\sqrt{D})$ with $D=...,-95,-41,-19,21,31,89,...$.\\

For the second topic, by Krasner's lemma there exist a finite number of degree $n$ extensions of $\Q_p$. Jones and Roberts have developed a database recording invariants of $p$-adic extensions for low degree $n$. I will contribute data to this database by computing the Galois slope content, inertia subgroup, and Galois mean slope for a variety of wildly ramified extensions of composite degree using the idea of \emph{global splitting models}.
Date Created
2019
Agent

Algebraic Structures in Mathematical Analysis

132466-Thumbnail Image.png
Description
The purpose of this senior thesis is to explore the abstract ideas that give rise to the well-known Fourier series and transforms. More specifically, finite group representations are used to study the structure of Hilbert spaces to determine under what

The purpose of this senior thesis is to explore the abstract ideas that give rise to the well-known Fourier series and transforms. More specifically, finite group representations are used to study the structure of Hilbert spaces to determine under what conditions an element of the space can be expanded as a sum. The Peter-Weyl theorem is the result that shows why integrable functions can be expressed in terms of trigonometric functions. Although some theorems will not be proved, the results that can be derived from them will be briefly discussed. For instance, the Pontryagin Duality theorem states that there is a canonical isomorphism between a group and the second dual of the group, and it can be used to prove $Plancherel$ theorem which essentially says that the Fourier transform is itself a unitary isomorphism.
Date Created
2019-05
Agent

On the Admittance of Frames in Hilbert C*-Modules

132473-Thumbnail Image.png
Description
The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in the early 1950's within the context of nonharmonic Fourier analysis

The theory of frames for Hilbert spaces has become foundational in the study of wavelet analysis and has far-reaching applications in signal and image-processing. Originally, frames were first introduced in the early 1950's within the context of nonharmonic Fourier analysis by Duffin and Schaeffer. It was then in 2000, when M. Frank and D. R. Larson extended the concept of frames to the setting of Hilbert C*-modules, it was in that same paper where they asked for which C*-algebras does every Hilbert C*-module admit a frame. Since then there have been a few direct answers to this question, one being that every Hilbert A-module over a C*-algebra, A, that has faithful representation into the C*-algebra of compact operators admits a frame. Another direct answer by Hanfeng Li given in 2010, is that any C*-algebra, A, such that every Hilbert C*-module admits a frame is necessarily finite dimensional. In this thesis we give an overview of the general theory of frames for Hilbert C*-modules and results answering the frame admittance property. We begin by giving an overview of the existing classical theory of frames in Hilbert spaces as well as some of the preliminary theory of Hilbert C*-modules such as Morita equivalence and certain tensor product constructions of C*-algebras. We then show how some results of frames can be extended to the case of standard frames in countably generated Hilbert C*-modules over unital C*-algebras, namely the frame decomposition property and existence of the frame transform operator. We conclude by going through some proofs/constructions that answer the question of frame admittance for certain Hilbert C*-modules.
Date Created
2019-05
Agent

Functorial results for C*-algebras of higher-rank graphs

155124-Thumbnail Image.png
Description
Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts a functorial approach to study the relationship between k-graphs and

Higher-rank graphs, or k-graphs, are higher-dimensional analogues of directed graphs, and as with ordinary directed graphs, there are various C*-algebraic objects that can be associated with them. This thesis adopts a functorial approach to study the relationship between k-graphs and their associated C*-algebras. In particular, two functors are given between appropriate categories of higher-rank graphs and the category of C*-algebras, one for Toeplitz algebras and one for Cuntz-Krieger algebras. Additionally, the Cayley graphs of finitely generated groups are used to define a class of k-graphs, and a functor is then given from a category of finitely generated groups to the category of C*-algebras. Finally, functoriality is investigated for product systems of C*-correspondences associated to k-graphs. Additional results concerning the structural consequences of functoriality, properties of the functors, and combinatorial aspects of k-graphs are also included throughout.
Date Created
2016
Agent