Diffusion-weighted MR imaging: behaviors of phenomenological models and enhanced PROPELLER data acquisition

151270-Thumbnail Image.png
Description
The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion

The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion inside simulated tissue consisting of semi-permeable cells and a variable cell size. We simulated a DWI acquisition using a pulsed gradient spin echo (PGSE) pulse sequence, and fitted the models to the simulated DWI signals using b-values up to 2500 s/mm2. For comparison, we calculated the apparent diffusion coefficient (ADC) of the monoexponential model (b-value = 1000 s/mm2). In separate experiments, we varied the cell size (5-10-15 μ), cell volume fraction (0.50-0.65-0.80), and membrane permeability (0.001-0.01-0.1 mm/s) to study how the fitted parameters tracked simulated microstructural changes. The ADC was sensitive to all the simulated microstructural changes except the decrease in membrane permeability. The σstat of the statistical distribution model increased exclusively with a decrease in cell volume fraction. The Kapp of the DKI model increased exclusively with decreased cell size and decreased with increasing membrane permeability. These results suggest that the non-monoexponential models have different, specific microstructural sensitivity, and a combination of the models may give insights into the microstructural underpinning of tissue pathology. Faster PROPELLER DWI acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor and thus scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate (SAR) and short scan time can be achieved in Turboprop+ using a high turbo factor, while off-resonance related artifacts are minimized.
Date Created
2012
Agent

Mobile health sensor for personal exposure assessment

151055-Thumbnail Image.png
Description
Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still

Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it is not clear the exact mechanism of air pollutants and its health effect. So it is difficult for the health centers to advise people how to prevent the air pollutant related diseases. It is of vital importance for both the agencies and the health centers to have a better understanding of the air pollution. Based on these needs, it is crucial to establish mobile health sensors for personal exposure assessment. Here, two sensing principles are illustrated: the tuning fork platform and the colorimetric platform. Mobile devices based on these principles have been built. The detections of ozone, NOX, carbon monoxide and formaldehyde have been shown. An integrated device of nitrogen dioxide and carbon monoxide is introduced. Fan is used for sample delivery instead pump and valves to reduce the size, cost and power consumption. Finally, the future work is discussed.
Date Created
2012
Agent

Multidimensional DFT IP generators for FPGA platforms

150476-Thumbnail Image.png
Description
Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in many signal processing applications, such as radar imaging and medical imaging. Traditionally, a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-dimensional (1-D) DFTs are computed

Multidimensional (MD) discrete Fourier transform (DFT) is a key kernel algorithm in many signal processing applications, such as radar imaging and medical imaging. Traditionally, a two-dimensional (2-D) DFT is computed using Row-Column (RC) decomposition, where one-dimensional (1-D) DFTs are computed along the rows followed by 1-D DFTs along the columns. However, architectures based on RC decomposition are not efficient for large input size data which have to be stored in external memories based Synchronous Dynamic RAM (SDRAM). In this dissertation, first an efficient architecture to implement 2-D DFT for large-sized input data is proposed. This architecture achieves very high throughput by exploiting the inherent parallelism due to a novel 2-D decomposition and by utilizing the row-wise burst access pattern of the SDRAM external memory. In addition, an automatic IP generator is provided for mapping this architecture onto a reconfigurable platform of Xilinx Virtex-5 devices. For a 2048x2048 input size, the proposed architecture is 1.96 times faster than RC decomposition based implementation under the same memory constraints, and also outperforms other existing implementations. While the proposed 2-D DFT IP can achieve high performance, its output is bit-reversed. For systems where the output is required to be in natural order, use of this DFT IP would result in timing overhead. To solve this problem, a new bandwidth-efficient MD DFT IP that is transpose-free and produces outputs in natural order is proposed. It is based on a novel decomposition algorithm that takes into account the output order, FPGA resources, and the characteristics of off-chip memory access. An IP generator is designed and integrated into an in-house FPGA development platform, AlgoFLEX, for easy verification and fast integration. The corresponding 2-D and 3-D DFT architectures are ported onto the BEE3 board and their performance measured and analyzed. The results shows that the architecture can maintain the maximum memory bandwidth throughout the whole procedure while avoiding matrix transpose operations used in most other MD DFT implementations. The proposed architecture has also been ported onto the Xilinx ML605 board. When clocked at 100 MHz, 2048x2048 images with complex single-precision can be processed in less than 27 ms. Finally, transpose-free imaging flows for range-Doppler algorithm (RDA) and chirp-scaling algorithm (CSA) in SAR imaging are proposed. The corresponding implementations take advantage of the memory access patterns designed for the MD DFT IP and have superior timing performance. The RDA and CSA flows are mapped onto a unified architecture which is implemented on an FPGA platform. When clocked at 100MHz, the RDA and CSA computations with data size 4096x4096 can be completed in 323ms and 162ms, respectively. This implementation outperforms existing SAR image accelerators based on FPGA and GPU.
Date Created
2012
Agent

Synthetic aperture radar image formation via sparse decomposition

149915-Thumbnail Image.png
Description
Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is

Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisi- tion, storage and communication that can lead to data corruption and a resulting degradation of image quality. It is convenient to consider corrupted samples as missing, creating a sparsely sampled aperture. A sparse aperture would also result from compressive sensing, which is a very attractive concept for data intensive sen- sors such as SAR. Recent developments in sparse decomposition algorithms can be applied to the problem of SAR image formation from a sparsely sampled aperture. Two modified sparse decomposition algorithms are developed, based on well known existing algorithms, modified to be practical in application on modest computa- tional resources. The two algorithms are demonstrated on real-world SAR images. Algorithm performance with respect to super-resolution, noise, coherent speckle and target/clutter decomposition is explored. These algorithms yield more accu- rate image reconstruction from sparsely sampled apertures than classical spectral estimators. At the current state of development, sparse image reconstruction using these two algorithms require about two orders of magnitude greater processing time than classical SAR image formation.
Date Created
2011
Agent

Noise resilient image segmentation and classification methods with applications in biomedical and semiconductor images

149313-Thumbnail Image.png
Description
Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical,

Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image segmentation approach is proposed in this thesis to tackle most of the challenges in the existing multi-region segmentation methods, including computational complexity and sensitivity to initialization. Medical image analysis helps in understanding biological processes and disease pathologies. In this thesis, two cell evolution analysis schemes are proposed for cell cluster extraction in order to analyze cell migration, cell proliferation, and cell dispersion in different cancer cell images. The proposed schemes accurately segment both the cell cluster area and the individual cells inside and outside the cell cluster area. The method is currently used by different cell biology labs to study the behavior of cancer cells, which helps in drug discovery. Defects can cause failure to motherboards, processors, and semiconductor units. An automatic defect detection and classification methodology is very desirable in many industrial applications. This helps in producing consistent results, facilitating the processing, speeding up the processing time, and reducing the cost. In this thesis, three defect detection and classification schemes are proposed to automatically detect and classify different defects related to semiconductor unit images. The first proposed defect detection scheme is used to detect and classify the solder balls in the processor sockets as either defective (Non-Wet) or non-defective. The method produces a 96% classification rate and saves 89% of the time used by the operator. The second proposed defect detection scheme is used for detecting and measuring voids inside solder balls of different boards and products. The third proposed defect detection scheme is used to detect different defects in the die area of semiconductor unit images such as cracks, scratches, foreign materials, fingerprints, and stains. The three proposed defect detection schemes give high accuracy and are inexpensive to implement compared to the existing high cost state-of-the-art machines.
Date Created
2010
Agent

Power system mode estimation using associate hermite expansion

149306-Thumbnail Image.png
Description
Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field

Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field measurements. However, the challenge to using these methods in assessing field measurements is their ability to accurately estimate stability in the presence of noise. In this thesis a new method is developed which estimates the modal content of simulated and actual field measurements using orthogonal polynomials and the results are compared to other commonly used estimators. This new method estimates oscillatory performance by fitting an associate Hermite polynomial to time domain data and extrapolating its spectrum to identify small signal power system frequencies. Once the frequencies are identified, damping assessment is performed using a modified sliding window technique with the use of linear prediction (LP). Once the entire assessment is complete the measurements can be judged to be stable or unstable. Collectively, this new technique is known as the associate Hermite expansion (AHE) algorithm. Validation of the AHE method versus results from four other spectral estimators demonstrates the method's accuracy and modal estimation ability with and without the presence of noise. A Prony analysis, a Yule-Walker autoregressive algorithm, a second sliding window estimator and the Hilbert-Huang Transform method are used in comparative assessments in support of this thesis. Results from simulated and actual field measurements are used in the comparisons, as well as artificially generated simple signals. A search for actual field testing results performed by a utility was undertaken and a request was made to obtain the measurements of a brake insertion test. Comparison results show that the AHE method is accurate as compared to the other commonly used spectral estimators and its predictive capability exceeded the other estimators in the presence of Gaussian noise. As a result, the AHE method could be employed in areas including operations and planning analysis, post-mortem analysis, power system damping scheme design and other analysis areas.
Date Created
2010
Agent