Real-Time Control of Production Systems with Constrained Time Windows

161608-Thumbnail Image.png
Description
A production system is commonly restricted by time windows. For example, perishability is a major concern in food processing and requires products, such as yogurt, beer and meat, not to stay in buffer for long. Semiconductor manufacturing is faced with

A production system is commonly restricted by time windows. For example, perishability is a major concern in food processing and requires products, such as yogurt, beer and meat, not to stay in buffer for long. Semiconductor manufacturing is faced with oxidation and moisture absorption issues, if a product in buffer is exposed to air for long. Machine reliability is a major source of uncertainty in production systems that causes residence time constraints to be unsatisfied, leading to potential product quality issues. Rapid advances in sensor technology and automation provide potentials to manage production in real time, but the system complexity, brought by residence time constraints, makes it difficult to optimize system performance while providing a guaranteed product quality. To contribute to this end, this dissertation is dedicated to modeling, analysis and control of production systems with constrained time windows. This study starts with a small-scale serial production line with two machines and one buffer. Even the simplest serial lines could have too large state space due to the consideration of residence time constraints. A Markov chain model is developed to approximately analyze its transient behavior with a high accuracy. An iterative learning algorithm is proposed to perform real-time control. The analysis of two-machine serial line contributes to the further analysis of more general and complex serial lines with multiple machines. Residence time constraints can be required in multiple stages. To deal with it, a two-machine-one-buffer subsystem isolated from a multi-stage serial production line is firstly analyzed and then acts as a building block to support the aggregation method for overall system performance. The proposed aggregation method substantially reduces the complexity of the problem while maintaining a high accuracy. A decomposition-based control approach is proposed to control a multi-stage serial production line. A production system is decomposed into small-scale subsystems, and an iterative aggregation procedure is then used to generate a production control policy. The decomposition-based control approach outperforms general-purpose reinforcement learning method by delivering significant system performance improvement and substantial reduction on computation overhead. Semiconductor assembly line is a typical production system, where products are restricted by time windows and production can be disrupted by machine failures. A production control problem of semiconductor assembly line is presented and studied, and thus total lot delay time and residence time constraint violation are minimized.
Date Created
2021
Agent

Locally Adaptive Stereo Vision Based 3D Visual Reconstruction

155540-Thumbnail Image.png
Description
Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive

Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes.





Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability.



In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.
Date Created
2017
Agent

Noise resilient image segmentation and classification methods with applications in biomedical and semiconductor images

149313-Thumbnail Image.png
Description
Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical,

Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image segmentation approach is proposed in this thesis to tackle most of the challenges in the existing multi-region segmentation methods, including computational complexity and sensitivity to initialization. Medical image analysis helps in understanding biological processes and disease pathologies. In this thesis, two cell evolution analysis schemes are proposed for cell cluster extraction in order to analyze cell migration, cell proliferation, and cell dispersion in different cancer cell images. The proposed schemes accurately segment both the cell cluster area and the individual cells inside and outside the cell cluster area. The method is currently used by different cell biology labs to study the behavior of cancer cells, which helps in drug discovery. Defects can cause failure to motherboards, processors, and semiconductor units. An automatic defect detection and classification methodology is very desirable in many industrial applications. This helps in producing consistent results, facilitating the processing, speeding up the processing time, and reducing the cost. In this thesis, three defect detection and classification schemes are proposed to automatically detect and classify different defects related to semiconductor unit images. The first proposed defect detection scheme is used to detect and classify the solder balls in the processor sockets as either defective (Non-Wet) or non-defective. The method produces a 96% classification rate and saves 89% of the time used by the operator. The second proposed defect detection scheme is used for detecting and measuring voids inside solder balls of different boards and products. The third proposed defect detection scheme is used to detect different defects in the die area of semiconductor unit images such as cracks, scratches, foreign materials, fingerprints, and stains. The three proposed defect detection schemes give high accuracy and are inexpensive to implement compared to the existing high cost state-of-the-art machines.
Date Created
2010
Agent