There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium…
There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in these novel 2D materials gives rise to highly anisotropic physical properties that enable unique applications in next-gen electronics and optoelectronics. For example, higher carrier mobility along one preferential crystal direction for anisotropic field effect transistors and anisotropic photon absorption for polarization-sensitive photodetectors.
This dissertation endeavors to address two key challenges towards practical application of anisotropic materials. One is the scalable production of high quality 2D anisotropic thin films, and the other is the controllability over anisotropy present in synthesized crystals. The investigation is focused primarily on rhenium disulfide because of its chemical similarity to conventional 2D transition metal dichalcogenides and yet anisotropic nature. Carefully designed vapor phase deposition has been demonstrated effective for batch synthesis of high quality ReS2 monolayer. Heteroepitaxial growth proves to be a feasible route for controlling anisotropic directions. Scanning/transmission electron microscopy and angle-resolved Raman spectroscopy have been extensively applied to reveal the structure-property relationship in synthesized 2D anisotropic layers and their heterostructures.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Integrated oxide/semiconductor heterostructures have attracted intense interest for device applications which require sharp interfaces and controlled defects. The research of this dissertation has focused on the characterization of perovskite oxide/oxide and oxide/semiconductor heterostructures, and the analysis of interfaces and defect…
Integrated oxide/semiconductor heterostructures have attracted intense interest for device applications which require sharp interfaces and controlled defects. The research of this dissertation has focused on the characterization of perovskite oxide/oxide and oxide/semiconductor heterostructures, and the analysis of interfaces and defect structures, using scanning transmission electrom microscopy (STEM) and related techniques.
The SrTiO3/Si system was initially studied to develop a basic understanding of the integration of perovskite oxides with semiconductors, and successful integration with abrupt interfaces was demonstrated. Defect analysis showed no misfit dislocations but only anti-phase boundaries (APBs) in the SrTiO3 (STO) films. Similar defects were later observed in other perovskite oxide heterostructures.
Ferroelectric BaTiO3 (BTO) thin films deposited directly onto STO substrates, or STO buffer layers with Ge substrates, were grown by molecular beam epitaxy (MBE) in order to control the polarization orientation for field-effect transistors (FETs). STEM imaging and elemental mapping by electron energy-loss spectroscopy (EELS) showed structurally and chemically abrupt interfaces, and the BTO films retained the c-axis-oriented tetragonal structure for both BTO/STO and BTO/STO/Ge heterostructures. The polarization displacement in the BTO films of TiN/BTO/STO heterostructures was investigated. The Ti4+ atomic column displacements and lattice parameters were measured directly using HAADF images. A polarization gradient, which switched from upwards to downwards, was observed in the BTO thin film, and evidence was found for positively-charged oxygen vacancies.
Heterostructures grown on Ge substrates by atomic layer deposition (ALD) were characterized and compared with MBE-grown samples. A two-step process was needed to overcome interlayer reaction at the beginning of ALD growth. A-site-rich oxide films with thicknesses of at least 2-nm had to be deposited and then crystallized before initiating deposition of the following perovskite oxide layer in order to suppress the formation of amorphous oxide layers on the Ge surface. BTO/STO/Ge, BTO/Ge, SrHfTiO3/Ge and SrZrO3/Ge thin films with excellent crystallinity were grown using this process.
Metal-insulator-metal (MIM) heterostructures were fabricated as ferroelectric capacitors and then electrically stressed to the point of breakdown to correlate structural changes with electrical and physical properties. BaTiO3 on Nb:STO was patterned with different top metal electrodes by focused-ion-beam milling, Au/Ni liftoff, and an isolation-defined approach.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. The most commonly alleged causes of instability in…
Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. The most commonly alleged causes of instability in CdTe device, such as “migration of Cu,” have been investigated rigorously over the past fifteen years. As all defects, intrinsic or extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and changing ionization state with excess free carriers. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging. The goal of the work in this dissertation is, thus, to eliminate the ambiguity between the observed performance changes under stress and their physical root cause by enabling a depth of modeling that takes account of diffusion and drift at the atomistic level coupled to the electronic subsystem responsible for a PV device’s function. The 1D Unified Solver, developed as part of this effort, enables us to analyze PV devices at a greater depth.
In this dissertation, the implementation of a drift-diffusion model defect migration simulator, development of an implicit reaction scheme for total mass conservation, and a couple of other numerical schemes to improve the overall flexibility and robustness of this coupled Unified Solver is discussed. Preliminary results on Cu (with or without Cl-treatment) annealing simulations in both single-crystal CdTe wafer and poly-crystalline CdTe devices show promising agreement to experimental findings, providing a new perspective in the research of improving doping concentration hence the open-circuit voltage of CdTe technology. Furthermore, on the reliability side, in agreement of previous experimental reports, simulation results suggest possibility of Cu depletion in short-circuited cells stressed at elevated temperature. The developed solver also successfully demonstrated that mobile donor migration can be used to explain solar cell performance changes under different stress conditions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this work, we are showing that iron (Fe) related defects in mono-silicon have very different recombination characteristics depending on the doping element employed. While the defect characteristics of the Fe in its dissociated state is comparably the same in…
In this work, we are showing that iron (Fe) related defects in mono-silicon have very different recombination characteristics depending on the doping element employed. While the defect characteristics of the Fe in its dissociated state is comparably the same in the materials of investigation, the defect characteristics of the associated state vary considerably. By using, defect parameter contour mapping (DPCM), a newly developed method for analyzing temperature and injection dependent lifetime data, we have for the first time, been able to show that in the case of gallium doping it is the orthorhombic state of the Fe-acceptor complex that is dominating the lifetime.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The Solar Powered Amphibious Transport (SPAT) is an amphibious hovercraft that uses solar energy as a power source and is fully controlled via iOS application on a phone or tablet. The hovercraft field is relatively unexplored with a solar power…
The Solar Powered Amphibious Transport (SPAT) is an amphibious hovercraft that uses solar energy as a power source and is fully controlled via iOS application on a phone or tablet. The hovercraft field is relatively unexplored with a solar power source, and one of the goals of the SPAT was to spark interest in sustainable hovercraft design. By challenging the potential of solar power, the SPAT proves that solar energy can be used in high power transportation applications. The second motive behind the creation a hovercraft was for it to serve as a disaster relief vehicle. A hovercraft can traverse both ground and water, which makes it ideal in flooded areas. With the SPAT being remote controlled it can allow the operator to stay at a safe distance while sending supplies or rescuing a person. The SPAT design covered multiple size options, however a small prototype version was built to serve as a proof of concept that a larger solar hovercraft is possible. Our analysis suggests that a larger craft will be able to carry more weight, and be more power efficient. A larger SPAT could help deliver supplies or rescue stranded people after a flood or hurricane. One issue faced however, was that many hovercrafts are highly expensive. The SPAT prototype was designed on a tight budget that did not exceed $800. The possibility of achieving this cost levels allows hovercraft to be a reasonable option for disaster relief agencies. After many long hours spent the SPAT became a fully operational remote control solar powered hovercraft.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD),…
The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic activity of the materials was analyzed using methylene blue degradation as an indicator of photocatalytic activity. The amorphous material showed significant photocatalytic activity in methylene blue degradation experiments, removing 100% of a 0.1 mmol methylene blue solution in 20 minutes, compared to the monoclinic crystalline NaTaO3, which showed negligible photocatalytic activity. Additional electrochemical characterization studies were carried out with methyl viologen (MV2+) to determine the band structure of the materials. Performing these synthesis and characterization has provided insight into further investigation of amorphous NaTaO3 and what makes the material an effective and inexpensive photocatalyst.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells…
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit…
Cadmium Telluride (CdTe) possesses preferable optical properties for photovoltaic (PV) applications: a near optimum bandgap of 1.5 eV, and a high absorption coefficient of over 15,000 cm-1 at the band edge. The detailed-balance limiting efficiency is 32.1% with an open-circuit voltage (Voc) of 1.23 V under the AM1.5G spectrum. The record polycrystalline CdTe thin-film cell efficiency has reached 22.1%, with excellent short-circuit current densities (Jsc) and fill-factors (FF). However, the Voc (~900 mV) is still far below the theoretical value, due to the large non-radiative recombination in the polycrystalline CdTe absorber, and the low-level p-type doping.
Monocrystalline CdTe/MgCdTe double-heterostructures (DHs) grown on lattice-matched InSb substrates have demonstrated impressively long carrier lifetimes in both unintentionally doped and Indium-doped n-type CdTe samples. The non-radiative recombination inside of, and at the interfaces of the CdTe absorbers in CdTe/MgCdTe DH samples has been significantly reduced due to the use of lattice-matched InSb substrates, and the excellent passivation provided by the MgCdTe barrier layers. The external luminescent quantum efficiency (η_ext) of n-type CdTe/MgCdTe DHs is up to 3.1%, observed from a 1-µm-thick CdTe/MgCdTe DH doped at 1017 cm-3. The 3.1% η_ext corresponds to an internal luminescent quantum efficiency (η_int) of 91%. Such a high η_ext gives an implied Voc, or quasi-Fermi-level splitting, of 1.13 V.
To obtain actual Voc, the quasi-Fermi-level splitting should be extracted to outside the circuit using a hole-selective contact layer. However, CdTe is difficult to be doped p-type, making it challenging to make efficient PN junction CdTe solar cells. With the use of MgCdTe barrier layers, the hole-contact layer can be defective without affecting the voltage. P-type hydrogenated amorphous silicon is an effective hole-selective contact for CdTe solar cells, enabling monocrystalline CdTe/MgCdTe DH solar cells to achieve Voc over 1.1 V, and a maximum active area efficiency of 18.8% (Jsc = 23.3 mA/cm2, Voc = 1.114 V, and FF = 72.3%). The knowledge gained through making the record-efficiency monocrystalline CdTe cell, particularly the n-type doping and the double-heterostructure design, may be transferable to polycrystalline CdTe thin-film cells and improve their competitiveness in the PV industry.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Layers of intrinsic hydrogenated amorphous silicon and amorphous silicon carbide
were prepared on a polished, intrinsic crystalline silicon substrate via plasma-enhanced chemical vapor deposition to simulate heterojunction device relevant stacks of various materials. The minority carrier lifetime, optical band gap and…
Layers of intrinsic hydrogenated amorphous silicon and amorphous silicon carbide
were prepared on a polished, intrinsic crystalline silicon substrate via plasma-enhanced chemical vapor deposition to simulate heterojunction device relevant stacks of various materials. The minority carrier lifetime, optical band gap and FTIR spectra were observed at incremental stages of thermal annealing. By observing the changes in the lifetimes the sample structure responsible for the most thermally robust surface passivation could be determined. These results were correlated to the optical band gap and the position and relative area of peaks in the FTIR spectra related to to silicon-hydrogen bonds in the layers. It was found that due to an increased presence of hydrogen bonded to silicon at voids within the passivating layer, hydrogenated amorphous silicon carbide at the interface of the substrate coupled with a hydrogenated amorphous silicon top layer provides better passivation after high temperature annealing than other device structures.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A basic theory and terminology that comprehensively applies to all different types
of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is…
A basic theory and terminology that comprehensively applies to all different types
of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is not adequate to intuitively describe the characteristics of novel contacts. This thesis shows that the many desirable characteristics of contacts that are discussed in the literature—carrier selectivity, passivation, and low majority carrier conductance, key among them—originate from the resistance to electrons and holes in the contact. These principles are applied to describe a few popular contact technologies in order to pave the path to envisioning novel contacts. Metrics for contact performance is introduced to quantify each of the above characteristics using the two carrier resistances. The the validity of the proposed metrics is explored using extensive PC-1D simulations.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)