Silicon Thin-film Contacts to Crystalline Silicon Solar Cells

191029-Thumbnail Image.png
Description
The application of silicon thin films in solar cells has evolved from their use in amorphous silicon solar cells to their use as passivating and carrier-selective contacts in crystalline silicon solar cells. Their use as carrier-selective contacts has enabled crystalline

The application of silicon thin films in solar cells has evolved from their use in amorphous silicon solar cells to their use as passivating and carrier-selective contacts in crystalline silicon solar cells. Their use as carrier-selective contacts has enabled crystalline silicon solar cell efficiencies above 26%, just 3% shy of the theoretical efficiency limit. The two cell architectures that have exceeded 26% are the silicon heterojunction and tunnel oxide passivating contact cell. These two cell architectures use two different forms of silicon thin films. In the case of the silicon heterojunction, the crystalline wafer is sandwiched between layers of intrinsic amorphous silicon, which acts as the passivation layer, and doped amorphous silicon, which acts as the carrier-selective layer. On the other hand, the tunnel oxide passivating contact cell uses a thin silicon oxide passivation layer and a doped polycrystalline silicon layer as the carrier-selective layer. Both cell structures have their distinct advantages and disadvantages when it comes to production. The processing of the silicon heterojunction relies on a low thermal budget and leads to high open-circuit voltages, but the cost of high-vacuum processing equipment presents a major hurdle for industrial scale production while the tunnel oxide passivating contact can be easily integrated into current industrial lines, yet it requires a higher thermal budgets and does not produce as high of an open-circuit voltage as the silicon heterojunction. This work focuses on using both forms of silicon thin films applied as passivating and carrier-selective contacts to crystalline silicon thin films.First, a thorough analysis of the series resistivity in silicon heterojunction solar cells is conducted. In particular, variations in the thickness and doping of the individual ii contact layers are performed to reveal their effect on the contact resistivity and in turn the total series resistivity of the cell. Second, a tunnel oxide passivated contact is created using a novel deposition method for the silicon oxide layer. A 21% efficient proof-of-concept device is presented demonstrating the potential of this deposition method. Finally, recommendations to further improve the efficiency of these cells is presented.
Date Created
2023
Agent

Nonlinear Synchrosqueezing for Dispersive Signal Analysis

190959-Thumbnail Image.png
Description
The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory

The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory modes. Such signals find application in structural healthmonitoring for identifying potential damage sensitive features in complex materials. Consequently, it becomes important to find matched time-frequency representations for characterizing the properties of the multiple frequency-dependent modes of propagation in dispersive material. Various time-frequency representations have been used for dispersive signal analysis. However, some of them suffered from poor timefrequency localization or were designed to match only specific dispersion modes with known characteristics, or could not reconstruct individual dispersive modes. This thesis proposes a new time-frequency representation, the nonlinear synchrosqueezing transform (NSST) that is designed to offer high localization to signals with nonlinear time-frequency group delay signatures. The NSST follows the technique used by reassignment and synchrosqueezing methods to reassign time-frequency points of the short-time Fourier transform and wavelet transform to specific localized regions in the time-frequency plane. As the NSST is designed to match signals with third order polynomial phase functions in the frequency domain, we derive matched group delay estimators for the time-frequency point reassignment. This leads to a highly localized representation for nonlinear time-frequency characteristics that also allow for the reconstruction of individual dispersive modes from multicomponent signals. For the reconstruction process, we propose a novel unsupervised learning approach that does not require prior information on the variation or number of modes in the signal. We also propose a Bayesian group delay mode merging approach for reconstructing modes that overlap in time and frequency. In addition to using simulated signals, we demonstrate the performance of the new NSST, together with mode extraction, using real experimental data of ultrasonic guided waves propagating through a composite plate.
Date Created
2023
Agent

Metallization and Interconnection Concerns for Silicon Photovoltaic Cells and Modules

187528-Thumbnail Image.png
Description
The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to

The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to contribute to the development of these innovations to move them closer to commercialization.Shingled PV modules and laser-welded foil-interconnected modules present an alternative to traditional soldered ribbons that can improve module power densities in a cost-effective manner. These two interconnection methods present new technical challenges for the PV industry. This work presents x-ray imaging methods to aid in the process-optimization of the application and curing of the adhesive material used in shingled modules. Further, detailed characterization of laser welds, their adhesion, and their effect on module performances is conducted. A strong correlation is found between the laser-weld adhesion and the modules’ durability through thermocycling. A minimum laser weld adhesion of 0.8 mJ is recommended to ensure a robust interconnection is formed. Detailed characterization and modelling are demonstrated on a 21% efficient double-sided tunnel-oxide passivating contact (DS-TOPCon) cell. This technology uses a novel approach that uses the front-metal grid to etch-away the parasitically-absorbing poly-Si material everywhere except for underneath the grid fingers. The modelling yielded a match to the experimental device within 0.06% absolute of its efficiency. This DS-TOPCon device could be improved to a 23.45%-efficient device by improving the optical performance, n-type contact resistivity, and grid finger aspect ratio. Finally, a modelling approach is explored for simulating Si thermophotovoltaic (TPV) devices. Experimentally fabricated diffused-junction devices are used to validate the optical and electrical aspects of the model. A peak TPV efficiency of 6.8% is predicted for the fabricated devices, but a pathway to 32.5% is explained by reducing the parasitic absorption of the contacts and reducing the wafer thickness. Additionally, the DS-TOPCon technology shows the potential for a 33.7% efficient TPV device.
Date Created
2023
Agent

Using Machine Learning to Extract Silicon Bulk Defect Parameters: A Case Study Using the Shockley-Read-Hall Equation

Description

To reduce the cost of silicon solar cells and improve their efficiency, it is crucial to identify and understand the defects limiting the electrical performance in silicon wafers. Bulk defects in semiconductors produce discrete energy levels within the bandgap and

To reduce the cost of silicon solar cells and improve their efficiency, it is crucial to identify and understand the defects limiting the electrical performance in silicon wafers. Bulk defects in semiconductors produce discrete energy levels within the bandgap and may act as recombination centers. This project investigates the viability of using machine learning for characterizing bulk defects in Silicon by using a Random Forest Regressor to extract the defect energy level and capture cross section ratios for a simulated Molybdenum defect and experimental Silicon Vacancy defect. Additionally, a dual convolutional neural network is used to classify the defect energy level in the upper or lower half bandgap.

Date Created
2023-05
Agent

Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures

161252-Thumbnail Image.png
Description
The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been

The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been used for atomic-scale study of interfacial defects in low-mismatched GaAs(001)-based and high-mismatched GaSb/GaAs(001) heterostructures.Three distinct stages of strain relaxation were identified in GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures with GaAsSb film thicknesses in the range of 50 to 4000 nm capped with 50-nm-thick GaAs layers. Diffraction contrast analysis with conventional TEM revealed that although 60° dislocations were primarily formed during the initial sluggish Stage-I relaxation, 90° dislocations were also created. Many curved dislocations, the majority of which extended into the substrate, were formed during Stage-II and Stage-III relaxation. The capping layers of heterostructures with larger film thickness (500 nm onwards) exhibited only Stage-I relaxation. A decrease in dislocation density was observed at the cap/film interface of the heterostructure with 4000-nm-thick film compared to that with 2000-nm-thick film, which correlated with smoothening of surface cross-hatch morphology. Detailed consideration of plausible dislocation sources for the capping layer led to the conclusion that dislocation half-loops nucleated at surface troughs were the main source of threading dislocations in these heterostructures. Aberration-corrected STEM imaging revealed that interfacial 60° dislocations in GaAs/GaAsSb/GaAs(001) and GaAs/GaAsP/GaAs(001) heterostructures were dissociated to form intrinsic stacking faults bounded by 90° and 30° Shockley partial dislocations. The cores of the 30° partials contained single atomic columns indicating that these dislocations primarily belonged to glide set. Apart from isolated dissociated 60° dislocations, Lomer-Cottrell locks, Lomer dislocations and a novel type of dissociated 90° dislocation were observed in GaAs/GaAsSb/GaAs heterostructures. The core structure of interfacial defects in GaSb/GaAs(001) heterostructure was also investigated using aberration-corrected STEM. 90° Lomer dislocations were primarily formed; however, glide-set perfect 60° and dissociated 60° dislocations were also observed. The 5-7 atomic-ring shuffle-set dislocation, the left-displaced 6-8 atomic-ring glide-set and the right-displaced 6-8 atomic-ring glide-set dislocations were three types of Lomer dislocations that were identified, among which the shuffle-set type was most common.
Date Created
2021
Agent

The Influence of Water Content and Water Dose on Adhesion of Solar Module Interfaces

158686-Thumbnail Image.png
Description
Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience

Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding the relation between interfacial adhesion and water content inside photovoltaic modules can help mitigate detrimental power losses. Water content measurements via water reflectometry detection combined with 180° peel tests were used to study adhesion of module materials exposed to damp heat and dry heat conditions. The effect of temperature, cumulative water dose, and water content on interfacial adhesion between ethylene vinyl acetate and (1) glass, (2) front of the cell, and (3) backsheet was studied. Temperature and time decreased adhesion at all these interfaces. Water content in the sample during the measurement showed significant decreases in adhesion for the Backsheet/Ethylene vinyl acetate interface. Water dose showed little effect for the Glass/ Ethylene vinyl acetate and Backsheet/ Ethylene vinyl acetate interfaces, but there was significant adhesion loss with water dose at the front cell busbar/encapsulant interface. Initial tensile test results to monitor the effects of the mechanical properties ethylene vinyl acetate and backsheet showed water content increasing the strength of ethylene vinyl acetate during plastic deformation but no change in the strength of the backsheet properties. This mechanical property change is likely inducing variation along the peel interface to possibly convolute the adhesion measurements conducted or to explain the variation seen for the water saturated and dried peel test sample types.
Date Created
2020
Agent

A Unified 2D Solver for Modeling Carrier and Defect Dynamics in Electronic and Photovoltaic Devices

157838-Thumbnail Image.png
Description
Semiconductor devices often face reliability issues due to their operational con-

ditions causing performance degradation over time. One of the root causes of such

degradation is due to point defect dynamics and time dependent changes in their

chemical nature. Previously developed Unified Solver

Semiconductor devices often face reliability issues due to their operational con-

ditions causing performance degradation over time. One of the root causes of such

degradation is due to point defect dynamics and time dependent changes in their

chemical nature. Previously developed Unified Solver was successful in explaining

the copper (Cu) metastability issues in cadmium telluride (CdTe) solar cells. The

point defect formalism employed there could not be extended to chlorine or arsenic

due to numerical instabilities with the dopant chemical reactions. To overcome these

shortcomings, an advanced version of the Unified Solver called PVRD-FASP tool was

developed. This dissertation presents details about PVRD-FASP tool, the theoretical

framework for point defect chemical formalism, challenges faced with numerical al-

gorithms, improvements for the user interface, application and/or validation of the

tool with carefully chosen simulations, and open source availability of the tool for the

scientific community.

Treating point defects and charge carriers on an equal footing in the new formalism

allows to incorporate chemical reaction rate term as generation-recombination(G-R)

term in continuity equation. Due to the stiff differential equations involved, a reaction

solver based on forward Euler method with Newton step is proposed in this work.

The Jacobian required for Newton step is analytically calculated in an elegant way

improving speed, stability and accuracy of the tool. A novel non-linear correction

scheme is proposed and implemented to resolve charge conservation issue.

The proposed formalism is validated in 0-D with time evolution of free carriers

simulation and with doping limits of Cu in CdTe simulation. Excellent agreement of

light JV curves calculated with PVRD-FASP and Silvaco Atlas tool for a 1-D CdTe

solar cell validates reaction formalism and tool accuracy. A closer match with the Cu

SIMS profiles of Cu activated CdTe samples at four different anneal recipes to the

simulation results show practical applicability. A 1D simulation of full stack CdTe

device with Cu activation at 350C 3min anneal recipe and light JV curve simulation

demonstrates the tool capabilities in performing process and device simulations. CdTe

device simulation for understanding differences between traps and recombination

centers in grain boundaries demonstrate 2D capabilities.
Date Created
2019
Agent

Electrical and Optical Characterization of Wide Band Gap Materials in the Zinc and Tin Oxynitride Family

132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
Date Created
2019-05
Agent

Fill Factor Loss Mechanisms: Analysis and Basic Understanding in Silicon Hetero-junction Solar Cells

156761-Thumbnail Image.png
Description
The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point

The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent loss sources are analyzed separately, and the weight of each in the total loss at the MPP are evaluated. The total series resistance is measured and then compared with the value obtained through summation over each of its components. In other words, series resistance losses due to recombination, vertical and lateral carrier transport, metalization, etc, are individually evaluated, and then by adding all these components together, the total loss is calculated. The concept of ll factor and its direct dependence on the loss mechanisms at the MPP of the device is explained, and its sensitivity to nearly every processing step of the cell fabrication is investigated. This analysis provides a focus lens to identify the main source of losses in SHJ solar cells and pave the path for further improvements in cell efficiency.

In this thesis, we provide a detailed understanding of the FF concept; we explain how it can be directly measured; how it can be calculated and what expressions can better approximate its value and under what operating conditions. The relation between FF and cell operating condition at the MPP is investigated. We separately analyzed the main FF sources of losses including recombination, sheet resistance, contact resistance and metalization. We study FF loss due to recombination and its separate components which include the Augur, radiative and SRH recombination is investigated. We study FF loss due to contact resistance and its separate components which include the contact resistance of dierent interfaces, e.g. between the intrinsic and doped a-Si layers, TCO and a-Si layers. We also study FF loss due to lateral transport and its components that including the TCO sheet resistance, the nger and the busbars resistances.
Date Created
2018
Agent

Amorphous Silicon Contacts for Silicon and Cadmium Telluride Solar Cells

156609-Thumbnail Image.png
Description
Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit.

Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts that enable low interface defect density and efficient carrier transport is critical for making high-efficiency solar cells. The recent record-efficiency n-type silicon cells with hydrogenated amorphous silicon (a-Si:H) contacts have demonstrated the usefulness of passivating and carrier-selective contacts. However, the use of a-Si:H contacts should not be limited in just n-type silicon cells.

In the present work, a-Si:H contacts for crystalline silicon and cadmium telluride (CdTe) solar cells are developed. First, hydrogen-plasma-processsed a-Si:H contacts are used in n-type Czochralski silicon cell fabrication. Hydrogen plasma treatment is used to increase the Si-H bond density of a-Si:H films and decrease the dangling bond density at the interface, which leads to better interface passivation and device performance, and wider temperature-processing window of n-type silicon cells under full spectrum (300–1200 nm) illumination. In addition, thickness-varied a-Si:H contacts are studied for n-type silicon cells under the infrared spectrum (700–1200 nm) illumination, which are prepared for silicon-based tandem applications.

Second, the a-Si:H contacts are applied to commercial-grade p-type silicon cells, which have much lower bulk carrier lifetimes than the n-type silicon cells. The approach is using gettering and bulk hydrogenation to improve the p-type silicon bulk quality, and then applying a-Si:H contacts to enable excellent surface passivation and carrier transport. This leads to an open-circuit voltage of 707 mV in p-type Czochralski silicon cells, and of 702 mV, the world-record open-circuit voltage in p-type multi-crystalline silicon cells.

Finally, CdTe cells with p-type a-Si:H hole-selective contacts are studied. As a proof of concept, p-type a-Si:H contacts enable achieving the highest reported open-circuit voltages (1.1 V) in mono-crystalline CdTe devices. A comparative study of applying p-type a-Si:H contacts in poly-crystalline CdTe solar cells is performed, resulting in absolute voltage gain of 53 mV over using the standard tellurium contacts.
Date Created
2018
Agent