Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building…
Phase change materials (PCMs) are combined sensible-and-latent thermal energy storage materials that can be used to store and dissipate energy in the form of heat. PCMs incorporated into wall-element systems have been well-studied with respect to energy efficiency of building envelopes. New applications of PCMs in infrastructural concrete, e.g., for mitigating early-age cracking and freeze-and-thaw induced damage, have also been proposed. Hence, the focus of this dissertation is to develop a detailed understanding of the physic-chemical and thermo-mechanical characteristics of cementitious systems and novel coating systems for wall-elements containing PCM. The initial phase of this work assesses the influence of interface properties and inter-inclusion interactions between microencapsulated PCM, macroencapsulated PCM, and the cementitious matrix. The fact that these inclusions within the composites are by themselves heterogeneous, and contain multiple components necessitate careful application of models to predict the thermal properties. The next phase observes the influence of PCM inclusions on the fracture and fatigue behavior of PCM-cementitious composites. The compliant nature of the inclusion creates less variability in the fatigue life for these composites subjected to cyclic loading. The incorporation of small amounts of PCM is found to slightly improve the fracture properties compared to PCM free cementitious composites. Inelastic deformations at the crack-tip in the direction of crack opening are influenced by the microscale PCM inclusions. After initial laboratory characterization of the microstructure and evaluation of the thermo-mechanical performance of these systems, field scale applicability and performance were evaluated. Wireless temperature and strain sensors for smart monitoring were embedded within a conventional portland cement concrete pavement (PCCP) and a thermal control smart concrete pavement (TCSCP) containing PCM. The TCSCP exhibited enhanced thermal performance over multiple heating and cooling cycles. PCCP showed significant shrinkage behavior as a result of compressive strains in the reinforcement that were twice that of the TCSCP. For building applications, novel PCM-composites coatings were developed to improve and extend the thermal efficiency. These coatings demonstrated a delay in temperature by up to four hours and were found to be more cost-effective than traditional building insulating materials.
The results of this work prove the feasibility of PCMs as a temperature-regulating technology. Not only do PCMs reduce and control the temperature within cementitious systems without affecting the rate of early property development but they can also be used as an auto-adaptive technology capable of improving the thermal performance of building envelopes.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE)…
Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight into the relationship in the non- linear viscoelastic NLVE domain. The main goals of this dissertation are two fold. The first goal is to utilize the technique of Laser Desorption Mass Spectroscopy (LDMS) to relate the molecular structure of asphalt binders to its viscoelastic properties. The second goal of the study is to utilize different NLVE characterization tools and analysis procedures to get a clear understanding of the NLVE behavior of the asphalt binders. The goals of the study are divided into four objectives; 1) Performing the LDMS test on asphalt binder to develop at the molecular weight distributions for different asphalts, 2) Characterizing LVE properties of Arizona asphalt binders, 3) Development of relationship between molecular structure and linear viscoelasticity, 4) Understanding NLVE behavior of asphalt binders through three different characterization methods and analysis techniques.
In this research effort, a promising physico-chemical relationship is developed between number average molecular weight and width of relaxation spectrum by utilizing the data from LVE characterization and the molecular weight distribution from LDMS. The relationship states that as the molecular weight of asphalt binders increase, they require more time to relax the developed stresses. Also, NLVE characterization was carried out at intermediate and high temperatures using three different tests, time sweep fatigue test, repeated stress/strain sweep test and Multiple Stress Creep and Recovery (MSCR) test. For the intermediate temperature fatigue tests, damage characterization was conducted by applying the S-VECD model and it was found that aged binders possess greater fatigue resistance than unaged binders. Using the high temperature LAOS tests, distortion was observed in the stress-strain relationships and the data was analyzed using a Fourier transform based tool called MITlaos, which deconvolves stress strain data into harmonic constituents and aids in identification of non-linearity by detecting higher order harmonics. Using the peak intensities observed at higher harmonic orders, non-linearity was quantified through a parameter termed as “Q”, which in future applications can be used to relate to asphalt chemical parameters. Finally, the last NLVE characterization carried out was the MSCR test, where the focus was on the scrutiny of the Jnrdiff parameter. It was found that Jnrdiff is not a capable parameter to represent the stress-sensitivity of asphalt binders. The developed alternative parameter Jnrslope does a better job of not only being a representative parameter of stress sensitivity but also for temperature sensitivity.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed…
Concrete is relatively brittle, and its tensile strength is typically only about one-tenth of its compressive strength. Regular concrete is therefore normally uses reinforcement steel bars to increase the tensile strength. It is becoming increasingly popular to use random distributed fibers as reinforcement and polymeric fibers is once such kind. In the case of polymeric fibers, due to hydrophobicity and lack of any chemical bond between the fiber and matrix, the weak interface zone limits the ability of the fibers to effectively carry the load that is on the matrix phase. Depending on the fiber’s surface asperity, shape, chemical nature, and mechanical bond characteristic of the load transfer between matrix and fiber can be altered so that the final composite can be improved. These modifications can be carried out by means of thermal treatment, mechanical surface modifications, or chemical changes The objective of this study is to measure and document the effect of gamma ray irradiation on the mechanical properties of macro polymeric fibers. The objective is to determine the mechanical properties of macro-synthetic fibers and develop guidelines for treatment and characterization that allow for potential positive changes due to exposure to irradiation. Fibers are exposed to various levels of ionizing radiation and the tensile, interface and performance in a mortar matrix are documented. Uniaxial tensile tests were performed on irradiated fibers to study fiber strength and failure pattern. SEM tests were carried out in order to study the surface characteristic and effect of different radiation dose on polymeric fiber. The interaction of the irradiated fiber with the cement composite was studied by a series of quasi-static pullout test for a specific embedded length. As a final task, flexural tests were carried out for different irradiated fibers to sum up the investigation. An average increase of 13% in the stiffness of the fiber was observed for 5 kGy of radiation. Flexural tests showed an average increase of 181% in the Req3 value and 102 % in the toughness of the sample was observed for 5 kGy of dose.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in…
The loading provisions were compared between the ASCE 7-10 standard and ASCE 7-16 standard. Two different structural models were considered: an office building with a flat roof located in Tempe and a community center with a gable roof located in Flagstaff. The following load types were considered: dead, live, wind, and snow loads. The only major changes between the standards were found in the wind load calculations. The winds loads were reduced by approximately 22% for the office building in Tempe and 37% for the community center in Flagstaff. A structural design was completed for the frame of the Flagstaff community building. There was a 19% reduction in cost from the design using ASCE 7-10 provisions compared to the design utilizing ASCE 7-16 provisions, leading to a saving of $7,599.17. The reduction in loading, and subsequently more cost-effective design, is attributed to the reduction in basic wind speed for the region and consideration of the ground elevation factor. The introduction of the new ASCE 7-16 standard was met with criticism, especially over the increase in specific coefficients in the wind load and seismic load chapters. Proponents of ASCE 7-16 boast that the new chapter on tsunami loads, new maps for various environmental loads, and a new electronic hazard are some of the merits of the newest standard. Others still question whether the complexity of the provisions is necessary and call for further improvements for the wind and seismic provisions. While tension exists in the desire for a simple standard, ASCE 7-16 prioritizes in having its provisions provide economical and reliable results. More consideration could be devoted to developing a more convenient standard for users. Regardless, engineering professionals should be able to adapt alongside newly developed practices and newly discovered data.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Design of novel infrastructure materials requires a proper understanding of the influence of microstructure on the desired performance. The priority is to seek new and innovative ways to develop sustainable infrastructure materials using natural resources and industrial solid wastes in…
Design of novel infrastructure materials requires a proper understanding of the influence of microstructure on the desired performance. The priority is to seek new and innovative ways to develop sustainable infrastructure materials using natural resources and industrial solid wastes in a manner that is ecologically sustainable and yet economically viable. Structural materials are invariably designed based on mechanical performance. Accurate prediction of effective constitutive behavior of highly heterogeneous novel structural materials with multiple microstructural phases is a challenging task. This necessitates reliable classification and characterization of constituent phases in terms of their volume fractions, size distributions and intrinsic elastic properties, coupled with numerical homogenization technique. This paper explores a microstructure-guided numerical framework that derives inputs from nanoindentation and synchrotron x-ray tomography towards the prediction of effective constitutive response of novel sustainable structural materials so as to enable microstructure-guided design.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to continuously improve the performance of the material. Fiber reinforcement is…
Concrete stands at the forefront of the construction industry as one of the most useful building materials. Economic and efficient improvements in concrete strengthening and manufacturing are widely sought to continuously improve the performance of the material. Fiber reinforcement is a significant technique in strengthening precast concrete, but manufacturing limitations are common which has led to reliance on steel reinforcement. Two-dimensional textile reinforcement has emerged as a strong and efficient alternative to both fiber and steel reinforced concrete with pultrusion manufacturing shown as one of the most effective methods of precasting concrete. The intention of this thesis project is to detail the components, functions, and outcomes shown in the development of an automated pultrusion system for manufacturing textile reinforced concrete (TRC). Using a preexisting, manual pultrusion system and current-day manufacturing techniques as a basis, the automated pultrusion system was designed as a series of five stations that centered on textile impregnation, system driving, and final pressing. The system was then constructed in the Arizona State University Structures Lab over the course of the spring and summer of 2015. After fabricating each station, a computer VI was coded in LabVIEW software to automatically drive the system. Upon completing construction of the system, plate and angled structural sections were then manufactured to verify the adequacy of the technique. Pultruded TRC plates were tested in tension and flexure while full-scale structural sections were tested in tension and compression. Ultimately, the automated pultrusion system was successful in establishing an efficient and consistent manufacturing process for continuous TRC sections.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
As green buildings become more popular, the challenge of structural engineer is to move beyond simply green to develop sustainable, and high-performing buildings that are more than just environmentally friendly. For decades, Portland cement-based products have been known as the…
As green buildings become more popular, the challenge of structural engineer is to move beyond simply green to develop sustainable, and high-performing buildings that are more than just environmentally friendly. For decades, Portland cement-based products have been known as the most commonly used construction materials in the world, and as a result, cement production is a significant source of global carbon dioxide (CO2) emissions, and environmental impacts at all stages of the process. In recent years, the increasing cost of energy and resource supplies, and concerns related to greenhouse gas emissions and environmental impacts have ignited more interests in utilizing waste and by-product materials as the primary ingredient to replace ordinary Portland cement in concrete systems. The environmental benefits of cement replacement are enormous, including the diversion of non-recycled waste from landfills for useful applications, the reduction in non-renewable energy consumption for cement production, and the corresponding emission of greenhouse gases. In the vast available body of literature, concretes consisting activated fly ash or slag as the binder have been shown to have high compressive strengths, and resistance to fire and chemical attack. This research focuses to utilize fly ash, by-product of coal fired power plant along with different alkaline solutions to form a final product with comparable properties to or superior than those of ordinary Portland cement concrete. Fly ash mortars using different concentration of sodium hydroxide and waterglass were dry and moist cured at different temperatures prior subjecting to uniaxial compressive loading condition. Since moist curing continuously supplies water for the hydration process of activated fly ash mortars while preventing thermal shrinkage and cracking, the samples were more durable and demonstrated a noticeably higher compressive strength. The influence of the concentration of the activating agent (4, or 8 M sodium hydroxide solution), and activator-to-binder ratio of 0.40 on the compressive strengths of concretes containing Class F fly ash as the sole binder is analyzed. Furthermore, liquid sodium silicate (waterglass) with silica modulus of 1.0 and 2.0 along with activator-to-binder ratio of 0.04 and 0.07 was also studied to understand its performance in contributing to the strength development of the activated fly ash concrete. Statistical analysis of the compressive strength results show that the available alkali concentration has a larger influence on the compressive strengths of activated concretes made using fly ash than the influence of curing parameters (elevated temperatures, condition, and duration).
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived…
It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials for this study. Sodium sulfate and calcium oxide were used as activators. In Part 1 of this study, focus was placed on high volume replacement of OPC using sodium sulfate as the activator. Despite improvements in heat generation for both CFA and FFA systems in the presence of sulfate, sodium sulfate was found to have adverse effects on the compressive strength of CFA mortars. In the CFA mixes, strength improved significantly with sulfate addition, but began to decrease in strength around 14 days due to expansive ettringite formation. Conversely, the addition of sulfate led to improved strength for FFA mixes such that the 28 day strength was comparable to that of the CFA mixes with no observable strength loss. Maximum compressive strengths achieved for the high volume replacement mixes was around 40 MPa, which is considerably lower than the baseline OPC mix used for comparison. In Part 2 of the study, temperature dependency and calcium oxide addition were studied for sodium sulfate activated systems composed of 100% Class F fly ash. In the presence of sulfate, added calcium increased reactivity and compressive strength at early ages, particularly at elevated temperatures. It is believed that sulfate and calcium react with alumina from fly ash to form ettringite, while heat overcomes the activation energy barrier of fly ash. The greatest strengths were obtained for mixes containing the maximum allowed quantity of calcium oxide (5%) and sodium sulfate (3%), and were around 12 MPa. This is a very low compressive strength relative to OPC and would therefore be an inadequate substitute for OPC needs.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The influence of mix design on the structural properties of FAU-type (faujasite) zeolite was studied. Samples were synthesized in a forced convection oven using various proportions of coal fly ash, sodium hydroxide (NaOH), and sodium chloride (NaCl). Three faujasite varieties,…
The influence of mix design on the structural properties of FAU-type (faujasite) zeolite was studied. Samples were synthesized in a forced convection oven using various proportions of coal fly ash, sodium hydroxide (NaOH), and sodium chloride (NaCl). Three faujasite varieties, labeled X, P and S, were prepared for each mix design. Samples were characterized using Fourier transform infrared (FT-IR) spectroscopy and thermo-gravimetric analysis (TGA). Mercury intrusion porosimetry (MIP) was used to obtain porosity information on the samples. Mechanical strength testing was performed on solid blocks of the zeolite samples prepared in a mold. It was found that the S variety in mix design (iv) had the most desirable balance of porosity and strength for engineering applications.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the…
Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State University holds a professional development workshop titled "Engineering Practices in the Secondary Science Classroom: Engineering Training for Grade 6-12 Math and Science School Teams". This workshop provides math and science teachers with the opportunity to either sustain existing engineering proficiency or be exposed to engineering design practices for the first time. To build teachers' proficiency with employing engineering design practices, they follow a two-day curriculum designed for application in both science and math classrooms as a conjoined effort. As of spring 2015, very little feedback has been received concerning the effectiveness of the ASU-ADE workshops. New feedback methods have been developed for future deployment as past and more informal immediate feedback from teachers and students was used to create preliminary changes in the workshop curriculum. In addition, basic laboratory testing has been performed to further link together engineering problem solving with experiments and computer modelling. In improving feedback and expanding available material, the curriculum was analyzed and improved to more effectively train teachers in engineering practices and implement these practices in their classrooms.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)