Computable properties of quantum states are given a dual gravitational interpretation via the AdS/CFT correspondence. For holographic states, boundary entanglement entropy is dual to the area of bulk geodesics, known as Ryu-Takayanagi surfaces. Furthermore, the viability of states to admit…
Computable properties of quantum states are given a dual gravitational interpretation via the AdS/CFT correspondence. For holographic states, boundary entanglement entropy is dual to the area of bulk geodesics, known as Ryu-Takayanagi surfaces. Furthermore, the viability of states to admit a holographic dual at all is constrained by their entanglement structure. Entanglement therefore defines a coarse classification of states in the Hilbert space. Similarly, how a state transforms under a group of operators also provides a classification on the Hilbert space. Certain states, e.g. stabilizer states, are invariant under large sets of operations, and consequently can be simulated on a classical computer. Cayley graphs offer a useful representation for a group of operators, where vertices represent group elements and edges represent group generators. In this representation, the orbit of a state under action of the group can also be represented as a ``reachability graph'', defined as a quotient of the group Cayley graph. Reachability graphs can be dressed to encode entanglement information, making them a useful tool for studying entanglement dynamics under quantum operations. Further quotienting a reachability graph by group elements that fix a chosen state property, e.g. entanglement entropy, builds a ``contracted graph''. Contracted graphs provide explicit bounds on state parameter evolution under quantum circuits. In this work, an upper bound on entropy vector evolution under Clifford group action is presented. Another important property of quantum systems is magic, which quantifies the difficulty of classically simulating a quantum state. Magic and entanglement are intimately related, but the two are not equivalent measures of complexity. Nonetheless, entanglement and magic play complementary roles when describing emergent gravitational phenomena in AdS/CFT. This manuscript describes the interplay between entanglement and magic, and offers a holographic interpretation for magic as cosmic brane back-reaction.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this thesis, applications of sparsity, specifically sparse-tensors are motivated in physics.An algorithm is introduced to natively compute sparse-tensor's partial-traces, along with direct implementations in popular python libraries for immediate use. These applications include the infamous exponentially-scaling (with system size)…
In this thesis, applications of sparsity, specifically sparse-tensors are motivated in physics.An algorithm is introduced to natively compute sparse-tensor's partial-traces, along with direct implementations in popular python libraries for immediate use. These applications include the infamous exponentially-scaling (with system size) Quantum-Many-Body problems (both Heisenberg/spin-chain-like and Chemical Hamiltonian models). This sparsity aspect is stressed as an important and essential feature in solving many real-world physical problems approximately-and-numerically. These include the original motivation of solving radiation-damage questions for ultrafast light and electron sources.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both…
Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both computation and measurement. The most common observable in theories of inflation is an equal-time correlation function, typically computed in the in-in formalism. Weinberg improved upon in-in perturbation theory by reducing the perturbative expansion to a series of nested commutators. Several authors noted a technical difference between Weinberg's formula and standard in-in perturbation theory. In this work, a proof of the order-by-order equivalence of Weinberg's commutators to traditional in-in perturbation theory is presented for all masses and commonly studied spins in a broad class of FLRW spacetimes. Then, a study of the effects of a sector of conformal matter coupled solely to gravity is given. The results can constrain N-naturalness as a complete solution of the hierarchy problem, given a measurement of the tensor fluctuations from inflation. The next part of this work focuses on the thermodynamics of de Sitter. It has been known for decades that there is a temperature associated with a cosmological horizon, which matches the thermal response of a comoving particle detector in de Sitter. A model of a perfectly reflecting cavity is constructed with fixed physical size in two-dimensional de Sitter spacetime. The natural ground state inside the box yields no response from a comoving particle detector, implying that the box screens out the thermal effects of the de Sitter horizon. The total energy inside the box is also shown to be smaller than an equivalent volume of the Bunch-Davies vacuum state. The temperature difference across the wall of the box might drive a heat engine, so an analytical model of the Szil\'ard engine is constructed and studied. It is found that all relevant thermodynamical quantities can be computed exactly at all stages of the engine cycle.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The classical double copy maps exact solutions of general relativity to exact solutions of U(1) Yang-Mills theory and suggests a hitherto unknown connection between gravity and gauge theory. In this thesis I study three problems using the Kerr-Schild and Weyl…
The classical double copy maps exact solutions of general relativity to exact solutions of U(1) Yang-Mills theory and suggests a hitherto unknown connection between gravity and gauge theory. In this thesis I study three problems using the Kerr-Schild and Weyl formulations of the classical double copy. Using the Kerr-Schild double copy, I analyze the single copy of a rotating nonsingular black hole and analyze its horizon structure to probe the relationship between the presence of horizons on the gravity side and the single copy field on the gauge theory side. In the second problem I describe the mapping between the surface gravity of static spherically symmetric black holes and the force on a test particle due to the single copy field of the black hole. I also describe potential routes to extending this map to rotating black holes. Finally, inspired by the extended Weyl double copy for spacetimes possessing sources, I reinterpret the single copy of the Taub- NUT metric as being comprised of two terms each being sourced by a separate parameter (the mass and the NUT charge).
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and…
This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and…
This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The double copy is a procedure that relates gravity to simpler gauge and scalar field theories. Double copy structure was first discovered in the context of scattering amplitudes, and has since been realized at the level of classical fields…
The double copy is a procedure that relates gravity to simpler gauge and scalar field theories. Double copy structure was first discovered in the context of scattering amplitudes, and has since been realized at the level of classical fields and curvatures. This dissertation focuses on mappings between fields (the Kerr-Schild double copy) and curvatures (the Weyl double copy). First, the connection between non-singular black holes and non-singular gauge theories is made, which illuminates a subtlety between gravitational horizons and the gauge field strength. Then, a perturbative double copy in the context of the fluid/gravity duality is presented, where the associated gauge theory quantities have surprisingly elegant interpretations in terms of certain classes of Navier-Stokes solutions. Finally, a new formula that provides a consistent treatment of external sources in the Weyl double copy is introduced. After illustrating its consistency with the Kerr-Schild double copy, the sourced Weyl double copy is applied to the most general Petrov type D electro-vac spacetime. Various limits of the general solution are analyzed, including the Kerr-Newman metric and the charged, accelerating black hole.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this dissertation I discuss about calculating one-loop partition function on curved spacetimes and various approaches to build symmetries of gravitational systems, and extending the analysis to the large dimensional spacetimes. I show the calculations pertaining to the contributions to…
In this dissertation I discuss about calculating one-loop partition function on curved spacetimes and various approaches to build symmetries of gravitational systems, and extending the analysis to the large dimensional spacetimes. I show the calculations pertaining to the contributions to the one-loop determinant for transverse trace-less gravitons in an $n + 3$-dimensional Schwarzschild black hole background in the large dimension limit, due to the $SO(n+2)$-type tensor and vector fluctuations, using the quasinormal mode method. Accordingly I find the quasinormal modes for these fluctuations as a function of a fiducial mass parameter $\Delta$. I show that the behavior of the one-loop determinant at large $\Delta$ accords with a heat kernel curvature expansion in one lower dimension, lending further evidence towards a membrane picture for black holes in the large dimension limit. I also find that the analysis of building one-loop determinants is similar to that of the AdS, thus serving as a motivation to explore this emergent symmetry in detail. For this, I first build these symmetries for Kerr-(A)dS black holes in arbitrary dimensions and then extend this analysis to the large dimensional Schwarzschild black hole. To study the former, in this dissertation, I discuss how to generalize the notion of hidden conformal symmetry in Kerr/CFT to Kerr-(A)dS black holes in arbitrary dimensions. I also discuss the results on building the $SL(2, R)$ generators directly from the Killing tower, whose Killing tensors and Killing vectors enforce the separability of the equations of motion. This construction amounts to an explicit relationship between hidden conformal symmetries and Killing tensors: I use the Killing tower to build a novel tensor equation connecting the $SL(2,R)$ Casimir with the radial Klein-Gordon operator. For asymptotically flat black holes in four and five dimensions I discuss that the previously known results that were obtained using the ``near-region'' limit and the monodromy method, were recovered. I also perform a monodromy evaluation of the Klein-Gordon scalar wave equation for all Kerr-(A)dS black holes, finding explicit forms for the zero mode symmetry generators.
Lastly, I discuss the work on extending this analysis to the large-dimensional Schwarzschild black hole as a step towards building a Large-D/CFT correspondence.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10…
In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The goal of my thesis is to mathematically model the magnetic monopole by finding numerical solutions to the equations of motion. In my analysis, I consider four cases: kinks, cosmic strings, global monopoles, and magnetic monopoles. I will also study electromagnetic gauge fields to prepare to include gauge fields in the magnetic monopole case. Numerical solutions are found for the cosmic string and global monopole cases. As expected, the energy is high at small distance r and drops off as r goes to infinity. Currently numerical solutions are being worked towards for electromagnetic gauge fields and the magnetic monopole case.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. …
This paper outlines the design and testing of a z-scan spectrometer capable of measuring the third order refraction index of liquids. The spectrometer underwent multiple redesigns, with each explored in this paper with their benefits and drawbacks discussed. The first design was capable of measuring the third order refraction index for glass, and found a value of 8.43 +- 0.392 x 10^(-16) cm^2/W for the glass sample, with the literature stating glass has a refraction index between 1-100 x 10^(-16) cm^2/W. The second design was capable of measuring the third order refraction index of liquids, and found values of 1.23 $\pm$ 0.121 $\e{-16}$ and 9.43 +- 1.00 x 10^(-17) cm^2/W for water and ethanol respectively, with literature values of 2.7 x 10^(-16) and 5.0 x 10^(-17) cm^2/W respectively. The third design gave inconclusive results due to extreme variability in testing, and and the fourth design outlined has not been tested yet due to time constraints.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)