Description
The double copy is a procedure that relates gravity to simpler gauge and scalar field theories. Double copy structure was first discovered in the context of scattering amplitudes, and has since been realized at the level of classical fields and curvatures. This dissertation focuses on mappings between fields (the Kerr-Schild double copy) and curvatures (the Weyl double copy). First, the connection between non-singular black holes and non-singular gauge theories is made, which illuminates a subtlety between gravitational horizons and the gauge field strength. Then, a perturbative double copy in the context of the fluid/gravity duality is presented, where the associated gauge theory quantities have surprisingly elegant interpretations in terms of certain classes of Navier-Stokes solutions. Finally, a new formula that provides a consistent treatment of external sources in the Weyl double copy is introduced. After illustrating its consistency with the Kerr-Schild double copy, the sourced Weyl double copy is applied to the most general Petrov type D electro-vac spacetime. Various limits of the general solution are analyzed, including the Kerr-Newman metric and the charged, accelerating black hole.
Download count: 6
Details
Title
- Selected Studies in the Classical Double Copy: Non-Singular Black Holes, Fluid/Gravity Duality, and External Sources
Contributors
- Manton, Tucker Daniel (Author)
- Easson, Damien A (Thesis advisor)
- Keeler, Cynthia (Committee member)
- Parikh, Maulik (Committee member)
- Wilczek, Frank (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2022
- Field of study: Physics