A Students’ Guide to Special Functions

Description

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).

Date Created
2022-12
Agent

A Students' Guide to Special Functions

Description
This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).
Date Created
2022-12
Agent

Exploring the Origins of Physics Student Misconceptions in Mathematics

164976-Thumbnail Image.png
Description

Introductory physics is one of the most difficult course sequences one can take as an undergraduate, due in no small part to the prerequisite knowledge of mathematics. Over the past six years, David Meltzer and his research group have developed

Introductory physics is one of the most difficult course sequences one can take as an undergraduate, due in no small part to the prerequisite knowledge of mathematics. Over the past six years, David Meltzer and his research group have developed a diagnostic meant to test students’ abilities in core mathematical concepts believed to be crucial foundations for learning physics. Concepts tested include the ability to solve systems of equations, work with trigonometric functions, manipulate fractions, and interpret information from graphs among others. With over 7000 students having taken the diagnostic, some patterns have begun to emerge, confirming work from other studies that suggest there is in fact a link between prerequisite math knowledge and success in an introductory physics course. However, most students take the diagnostic either in a classroom setting or online, so student responses are largely limited to being categorized as simply correct or incorrect. Even when students’ work is present it is impossible to assess their mindset when working through a problem without making inferences and logical leaps. In an attempt to better understand the nature of students’ misconceptions in mathematics I have conducted seven semi-formal interviews with introductory physics students just after they have completed the diagnostic where they walked me through their solutions and thought processes.

Date Created
2022-05
Agent

FUEL CONSUMPTION FOR RELATIVISTIC TRAVEL

135641-Thumbnail Image.png
Description
Einstein's theory of special relativity has been used by accomplished science fiction authors since its discovery in 1905, allowing intrepid adventurers to reach far away worlds without having to fear time's passage. By traveling near light speed, these fictional travelers

Einstein's theory of special relativity has been used by accomplished science fiction authors since its discovery in 1905, allowing intrepid adventurers to reach far away worlds without having to fear time's passage. By traveling near light speed, these fictional travelers experience a different passage of time as the universe ensures the commonality of the speed of light in all reference frames. In the here and now, this method of travel has been proposed to assist in interstellar and interplanetary exploration. This paper will investigate the practicality of this method of travel by proposing a mission utilizing a craft with this type of velocity.
Date Created
2016-05
Agent

Computer-Aided Space-Time-Energy Budgets for Round-Trip Relativistic Excursions

Description
Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by

Since the acceptance of Einstein's special theory of relativity by the scientific community, authors of science fiction have used the concept of time dilation to permit seemingly impossible feats. Simple spacecraft acceleration schemes involving time dilation have been considered by scientists and fiction writers alike. Using an original Java program based upon the differential equations for special relativistic kinematics, several scenarios for round trip excursions at relativistic speeds are calculated and compared, with particular attention to energy budget and relativistic time passage in all relevant frames.
Date Created
2015-05
Agent