Computational Challenges in BART Modeling: Extrapolation, Classification, and Causal Inference

191496-Thumbnail Image.png
Description
This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian

This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART trees. This allows for extrapolation based on the most relevant data points and covariate variables determined by the trees' structure. The local GP technique is extended to the Bayesian causal forest (BCF) models to address the positivity violation issue in causal inference. Additionally, I introduce the LongBet model to estimate time-varying, heterogeneous treatment effects in panel data. Furthermore, I present a Poisson-based model, with a modified likelihood for XBART for the multi-class classification problem.
Date Created
2024
Agent

Tree Ensemble Algorithms for Causal Machine Learning

190865-Thumbnail Image.png
Description
This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous

This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF) model handles variance via a group-specific parameter, and the Heteroskedastic version of XBCF (H-XBCF) uses a separate tree ensemble to learn covariate-dependent variance. This work also contributes to the field of survival analysis by proposing a new framework for estimating survival probabilities via density regression. Within this framework, the Heteroskedastic Accelerated Bayesian Additive Regression Trees (H-XBART) model, which is also developed as part of this work, is utilized in treatment effect estimation for right-censored survival outcomes. All models have been implemented as part of the XBART R package, and their performance is evaluated via extensive simulation studies with appropriate sets of comparators. The contributed methods achieve similar levels of performance, while being orders of magnitude (sometimes as much as 100x) faster than comparator state-of-the-art methods, thus offering an exciting opportunity for treatment effect estimation in the large data setting.
Date Created
2023
Agent

Bayesian Spatiotemporal Modeling and Uncertainty Quantification

190731-Thumbnail Image.png
Description
Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is

Uncertainty Quantification (UQ) is crucial in assessing the reliability of predictivemodels that make decisions for human experts in a data-rich world. The Bayesian approach to UQ for inverse problems has gained popularity. However, addressing UQ in high-dimensional inverse problems is challenging due to the intensity and inefficiency of Markov Chain Monte Carlo (MCMC) based Bayesian inference methods. Consequently, the first primary focus of this thesis is enhancing efficiency and scalability for UQ in inverse problems. On the other hand, the omnipresence of spatiotemporal data, particularly in areas like traffic analysis, underscores the need for effectively addressing inverse problems with spatiotemporal observations. Conventional solutions often overlook spatial or temporal correlations, resulting in underutilization of spatiotemporal interactions for parameter learning. Appropriately modeling spatiotemporal observations in inverse problems thus forms another pivotal research avenue. In terms of UQ methodologies, the calibration-emulation-sampling (CES) scheme has emerged as effective for large-dimensional problems. I introduce a novel CES approach by employing deep neural network (DNN) models during the emulation and sampling phase. This approach not only enhances computational efficiency but also diminishes sensitivity to training set variations. The newly devised “Dimension- Reduced Emulative Autoencoder Monte Carlo (DREAM)” algorithm scales Bayesian UQ up to thousands of dimensions in physics-constrained inverse problems. The algorithm’s effectiveness is exemplified through elliptic and advection-diffusion inverse problems. In the realm of spatiotemporal modeling, I propose to use Spatiotemporal Gaussian processes (STGP) in likelihood modeling and Spatiotemporal Besov processes (STBP) in prior modeling separately. These approaches highlight the efficacy of incorporat- ing spatial and temporal information for enhanced parameter estimation and UQ. Additionally, the superiority of STGP is demonstrated compared to static and time- averaged methods in time-dependent advection-diffusion partial differential equation (PDE) and three chaotic ordinary differential equations (ODE). Expanding upon Besov Process (BP), a method known for sparsity-promotion and edge-preservation, STBP is introduced to capture spatial data features and model temporal correlations by replacing the random coefficients in the series expansion with stochastic time functions following Q-exponential process(Q-EP). This advantage is showcased in dynamic computerized tomography (CT) reconstructions through comparison with classic STGP and a time-uncorrelated approach.
Date Created
2023
Agent

Machine Learning and Causal Inference: Theory, Examples, and Computational Results

187808-Thumbnail Image.png
Description
This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review

This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth theoretical study. Next, various computational approaches to estimating causal effects with machine learning methods are compared with these theoretical desiderata in mind. Several improvements to current methods for causal machine learning are identified and compelling angles for further study are pinpointed. Finally, a common method used for “explaining” predictions of machine learning algorithms, SHAP, is evaluated critically through a statistical lens.
Date Created
2023
Agent

Case Studies in Machine Learning of Reduced Form Models for Causal Inference

187395-Thumbnail Image.png
Description
This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters.

This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters. The rest of the dissertation focuses on the development of novel “reduced form” models which are designed to assess the particular challenges of different datasets. Chapter 3 explores the question of whether or not forecasts of bankruptcy cause bankruptcy. The question arises from the observation that companies issued going concern opinions were more likely to go bankrupt in the following year, leading people to speculate that the opinions themselves caused the bankruptcy via a “self-fulfilling prophecy”. A Bayesian machine learning sensitivity analysis is developed to answer this question. In exchange for additional flexibility and fewer assumptions, this approach loses point identification of causal effects and thus a sensitivity analysis is developed to study a wide range of plausible scenarios of the causal effect of going concern opinions on bankruptcy. Reported in the simulations are different performance metrics of the model in comparison with other popular methods and a robust analysis of the sensitivity of the model to mis-specification. Results on empirical data indicate that forecasts of bankruptcies likely do have a small causal effect. Chapter 4 studies the effects of vaccination on COVID-19 mortality at the state level in the United States. The dynamic nature of the pandemic complicates more straightforward regression adjustments and invalidates many alternative models. The chapter comments on the limitations of mechanistic approaches as well as traditional statistical methods to epidemiological data. Instead, a state space model is developed that allows the study of the ever-changing dynamics of the pandemic’s progression. In the first stage, the model decomposes the observed mortality data into component surges, and later uses this information in a semi-parametric regression model for causal analysis. Results are investigated thoroughly for empirical justification and stress-tested in simulated settings.
Date Created
2023
Agent

Abstract.pdf

Description
My project goes over creating a probability model to accurately predict the probability of a shot in the NHL becoming a goal. It explores different types of models to produce the most accurate model. The study explains which variables contribute

My project goes over creating a probability model to accurately predict the probability of a shot in the NHL becoming a goal. It explores different types of models to produce the most accurate model. The study explains which variables contribute most to whether a shot results in a goal or not and of those variables how teams can control them to have the most success.
Date Created
2023-05
Agent

Lachapelle_Spring_2023.pdf

Description
My project goes over creating a probability model to accurately predict the probability of a shot in the NHL becoming a goal. It explores different types of models to produce the most accurate model. The study explains which variables contribute

My project goes over creating a probability model to accurately predict the probability of a shot in the NHL becoming a goal. It explores different types of models to produce the most accurate model. The study explains which variables contribute most to whether a shot results in a goal or not and of those variables how teams can control them to have the most success.
Date Created
2023-05
Agent

NHL Goal Probability: Identifying Trends Across the League
Using Predictive Modeling

Description

My project goes over creating a probability model to accurately predict the probability of a shot in the NHL becoming a goal. It explores different types of models to produce the most accurate model. The study explains which variables contribute

My project goes over creating a probability model to accurately predict the probability of a shot in the NHL becoming a goal. It explores different types of models to produce the most accurate model. The study explains which variables contribute most to whether a shot results in a goal or not and of those variables how teams can control them to have the most success.

Date Created
2023-05
Agent

US Forest Fire Size Prediction using Machine Learning

Description
The number of extreme wildfires is on the rise globally, and predicting the size of a fire will help officials make appropriate decisions to mitigate the risk the fire poses against the environment and humans. This study attempts to find

The number of extreme wildfires is on the rise globally, and predicting the size of a fire will help officials make appropriate decisions to mitigate the risk the fire poses against the environment and humans. This study attempts to find the burned area of fires in the United States based on attributes such as time, weather, and location of the fire using machine learning methods.
Date Created
2022-12
Agent

Using Machine Learning Classification Techniques to Predict Recessionary Periods in the U.S. Economy

164597-Thumbnail Image.png
Description
The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies

The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies nearing 60-70%, where some models even predicted the Great Recession based off data from the previous 50 years. This paper will build on past work, by starting with less complex classification techniques that are more broadly used in recession forecasting and end by incorporating more complex ML models that produce higher accuracies than their more primitive counterparts. Many models were tested in this analysis and the findings here corroborate past work that the SVM methodology produces more accurate results than currently used probit models, but adds on that other ML models produced sufficient accuracy as well.
Date Created
2022-05
Agent