164597-Thumbnail Image.png
Description
The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies

The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies nearing 60-70%, where some models even predicted the Great Recession based off data from the previous 50 years. This paper will build on past work, by starting with less complex classification techniques that are more broadly used in recession forecasting and end by incorporating more complex ML models that produce higher accuracies than their more primitive counterparts. Many models were tested in this analysis and the findings here corroborate past work that the SVM methodology produces more accurate results than currently used probit models, but adds on that other ML models produced sufficient accuracy as well.
Reuse Permissions
  • 1019.08 KB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Download count: 2

    Details

    Title
    • Using Machine Learning Classification Techniques to Predict Recessionary Periods in the U.S. Economy
    Date Created
    2022-05
    Resource Type
  • Text
  • Machine-readable links