Tuning surface wettability through volumetric engineering

155231-Thumbnail Image.png
Description
Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite

Many defense, healthcare, and energy applications can benefit from the development of surfaces that easily shed droplets of liquids of interest. Desired wetting properties are typically achieved via altering the surface chemistry or topography or both through surface engineering. Despite many recent advancements, materials modified only on their exterior are still prone to physical degradation and lack durability. In contrast to surface engineering, this thesis focuses on altering the bulk composition and the interior of a material to tune how an exterior surface would interact with liquids. Fundamental and applied aspects of engineering of two material systems with low contact angle hysteresis (i.e. ability to easily shed droplets) are explained. First, water-shedding metal matrix hydrophobic nanoparticle composites with high thermal conductivity for steam condensation rate enhancement are discussed. Despite having static contact angle <90° (not hydrophobic), sustained dropwise steam condensation can be achieved at the exterior surface of the composite due to low contact angle hysteresis (CAH). In order to explain this observation, the effect of varying the length scale of surface wetting heterogeneity over three orders of magnitude on the value of CAH was experimentally investigated. This study revealed that the CAH value is primarily governed by the pinning length which in turn depends on the length scale of wetting heterogeneity. Modifying the heterogeneity size ultimately leads to near isotropic wettability for surfaces with highly anisotropic nanoscale chemical heterogeneities. Next, development of lubricant-swollen polymeric omniphobic protective gear for defense and healthcare applications is described. Specifically, it is shown that the robust and durable protective gear can be made from polymeric material fully saturated with lubricant that can shed all liquids irrespective of their surface tensions even after multiple contact incidences with the foreign objects. Further, a couple of schemes are proposed to improve the rate of lubrication and replenishment of lubricant as well as reduce the total amount of lubricant required in making the polymeric protective gear omniphobic. Overall, this research aims to understand the underlying physics of dynamic surface-liquid interaction and provides simple scalable route to fabricate better materials for condensers and omniphobic protective gear.
Date Created
2017
Agent

Development and characterization of chemical resistant water separation composite membranes by using impermeable polymer matrix

155134-Thumbnail Image.png
Description
Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater

Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater than one year’s duration. Currently, the Water Recovery System (WRS) used on the National Aeronautics and Space Administration (NASA) shuttles recovers only 70% of generated wastewater.1 Current osmotic processes show high capability to increase water recovery from wastewater. However, commercial reverse osmosis (RO) membranes rapidly degrade when exposed to pretreated urine-containing wastewater. Also, non-ionic small molecules substances (i.e., urea) are very poorly rejected by commercial RO membranes.

In this study, an innovative composite membrane that integrates water-selective molecular sieve particles into a liquid-barrier chemically resistant polymer film is synthetized. This plan manipulates distinctive aspects of the two materials used to create the membranes: (1) the innate permeation and selectivity of the molecular sieves, and (2) the decay-resistant, versatile, and mechanical strength of the liquid-barrier polymer support matrix.

To synthesize the membrane, Linde Type A (LTA) zeolite particles are anchored to the porous substrate, producing a single layer of zeolite particles capable of transporting water through the membrane. Thereafter, coating the chemically resistant latex polymer filled the space between zeolites. Finally, excess polymer was etched from the surface to expose the zeolites to the feed solution. The completed membranes were tested in reverse osmosis mode with deionized water, sodium chloride, and rhodamine solutions to determine the suitability for water recovery.

The main distinguishing characteristics of the new membrane design compared with current composite membrane include: (1) the use of an impermeable polymer broadens the range of chemical resistant polymers that can be used as the polymer matrix; (2) the use of zeolite particles with specific pore size insures the high rejection of the neutral molecules since water is transported through the zeolite rather than the polymer; (3) the use of latex dispersions, environmentally friendly water based-solutions, as the polymer matrix shares the qualities of low volatile organic compound, low cost, and non- toxicity.
Date Created
2016
Agent

Synthesis and Permeation of Large Pore Metal-organic Framework Membranes

154238-Thumbnail Image.png
Description
ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF)

ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2. These membranes offer very tangible potential to separate CO2 in a wide array of industrially relevant separation processes, such as the separation from CO2 in flue gas emissions, as well as the sweetening of methane.

By virtue of this, the purpose of this dissertation is to synthesize and characterize two linear large-pore MOF membranes, MOF-5 and ZIF-68, and to study their gas separation properties in binary mixtures of CO¬2/N2 and CO2/CH4. The three main objectives researched are as follows. The first is to study the pervaporation behavior and stability of MOF-5; this is imperative because although MOF-5 exhibits desirable adsorption and separation characteristics, it is very unstable in atmospheric conditions. In determining its stability and behavior in pervaporation, this material can be utilized in conditions wherein atmospheric levels of moisture can be avoided. The second objective is to synthesize, optimize and characterize a linear, more stable MOF membrane, ZIF-68. The final objective is to study in tandem the high-pressure gas separation behavior of MOF-5 and ZIF-68 in binary gas systems of both CO2/N2 and CO2/CH4.

Continuous ZIF-68 membranes were synthesized via the reactive seeding method and the modified reactive seeding method. These membranes, as with the MOF-5 membranes synthesized herein, both showed adherence to Knudsen diffusion, indicating limited defects. Organic solvent experiments indicated that MOF-5 and ZIF-68 were stable in a variety of organic solvents, but both showed reductions in permeation flux of the tested molecules. These reductions were attributed to fouling and found to be cumulative up until a saturation of available bonding sites for molecules was reached and stable pervaporation permeances were reached for both. Gas separation behavior for MOF-5 showed direct dependence on the CO2 partial pressure and the overall feed pressure, while ZIF-68 did not show similar behavior. Differences in separation behavior are attributable to orientation of the ZIF-68 membranes.
Date Created
2015
Agent

Crystalline and amorphous metallic membranes for hydrogen separation

154097-Thumbnail Image.png
Description
In the United States, 95% of the industrially produced hydrogen is from natural gas reforming. Membrane-based techniques offer great potential for energy efficient hydrogen separations. Pd77Ag23 is the bench-mark metallic membrane material for hydrogen separation at high temperatures. However, the

In the United States, 95% of the industrially produced hydrogen is from natural gas reforming. Membrane-based techniques offer great potential for energy efficient hydrogen separations. Pd77Ag23 is the bench-mark metallic membrane material for hydrogen separation at high temperatures. However, the high cost of palladium limits widespread application. Amorphous metals with lower cost elements are one alternative to replace palladium-based membranes. The overall aim of this thesis is to investigate the potential of binary and ternary amorphous metallic membranes for hydrogen separation. First, as a benchmark, the influence of surface state of Pd77Ag23 crystalline metallic membranes on the hydrogen permeability was investigated. Second, the hydrogen permeability, thermal stability and mechanical properties of Cu-Zr and Ni60Nb35M5 (M=Sn, Ti and Zr) amorphous metallic membranes was evaluated.

Different heat treatments were applied to commercial Pd77Ag23 membranes to promote surface segregation. X-ray photoelectron spectroscopy (XPS) analysis indicates that the membrane surface composition changed after heat treatment. The surface area of all membranes increased after heat treatment. The higher the surface Pd/(Pd+Ag) ratio, the higher the hydrogen permeability. Surface carbon removal and surface area increase cannot explain the observed permeability differences.

Previous computational modeling predicted that Cu54Zr46 would have high hydrogen permeability. Amorphous metallic Cu-Zr (Zr=37, 54, 60 at. %) membranes were synthesized and investigated. The surface oxides may result in the lower experimental hydrogen permeability lower than that predicted by the simulations. The permeability decrease indicates that the Cu-Zr alloys crystallized in less than two hours during the test (performed at 300 °C) at temperatures below the glass transition temperature. This original experimental results show that thermal stability of amorphous metallic membranes is critical for hydrogen separation applications.

The hydrogen permeability of Ni60Nb35M5 (M=Sn, Ti and Zr) amorphous metallic membranes was investigated. Nanoindentation shows that the Young’s modulus and hardness increased after hydrogen permeability test. The structure is maintained amorphous after 24 hours of hydrogen permeability testing at 400°C. The maximum hydrogen permeability of three alloys is 10-10 mol m-1 s-1 Pa-0.5. Though these alloys exhibited a slight hydrogen permeability decreased during the test, the amorphous metallic membranes were thermally stable and did not crystalize.
Date Created
2015
Agent

Polymer-gold composite particles: synthesis, characterization, application, and beyond

153830-Thumbnail Image.png
Description
Polymer-gold composite particles are of tremendous research interests. Contributed by their unique structures, these particles demonstrate superior properties for optical, catalytic and electrical applications. Moreover, the incorporation of “smart” polymers into polymer-gold composite particles enables the composite particles synergistically respond

Polymer-gold composite particles are of tremendous research interests. Contributed by their unique structures, these particles demonstrate superior properties for optical, catalytic and electrical applications. Moreover, the incorporation of “smart” polymers into polymer-gold composite particles enables the composite particles synergistically respond to environment-stimuli like temperature, pH and light with promising applications in multiple areas.

A novel Pickering emulsion polymerization route is found for synthesis of core-shell structured polymer-gold composite particles. It is found that the surface coverage of gold nanoparticles (AuNP) on a polystyrene core is influenced by gold nanoparticle concentration and hydrophobicity. More importantly, the absorption wavelength of polystyrene-gold composite particles is tunable by adjusting AuNP interparticle distance. Further, core-shell structured polystyrene-gold composite particles demonstrate excellent catalyst recyclability.

Asymmetric polystyrene-gold composite particles are successfully synthesized via seeded emulsion polymerization, where AuNPs serve as seeds, allowing the growth of styrene monomers/oligomers on them. These particles also demonstrate excellent catalyst recyclability. Further, monomers of “smart” polymers, poly (N-isopropylacrylamide) (PNIPAm), are successfully copolymerized into asymmetric composite particles, enabling these particles’ thermo-responsiveness with significant size variation around lower critical solution temperature (LCST) of 31°C. The significant size variation gives rise to switchable scattering intensity property, demonstrating potential applications in intensity-based optical sensing.

Multipetal and dumbbell structured gold-polystyrene composite particles are also successfully synthesized via seeded emulsion polymerization. It is intriguing to observe that by controlling reaction time and AuNP size, tetrapetal-structured, tripetal-structured and dumbbell-structured gold-polystyrene are obtained. Further, “smart” PNIPAm polymers are successfully copolymerized into dumbbell-shaped particles, showing significant size variation around LCST. Self-modulated catalytic activity around LCST is achieved for these particles. It is hypothesized that above LCST, the significant shrinkage of particles limits diffusion of reaction molecules to the surface of AuNPs, giving a reduced catalytic activity.

Finally, carbon black (CB) particles are successfully employed for synthesis of core- shell PNIPAm/polystyrene-CB particles. The thermo-responsive absorption characteristics of PNIPAm/polystyrene-CB particles enable them potentially suitable to serve as “smart” nanofluids with self-controlled temperature. Compared to AuNPs, CB particles provide desirable performance here, because they show no plasmon resonance in visible wavelength range, whereas AuNPs’ absorption in the visible wavelength range is undesirable.
Date Created
2015
Agent

Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
Date Created
2015
Agent

Modeling and analysis on pervaporation separation of composite zeolite membranes

153013-Thumbnail Image.png
Description
Pervaporation is a membrane separation technology that has had industrial application and which is the subject of ongoing research. Two major factors are important in judging the quality of a membrane: selectivity and permeation flux. Although many types of materials

Pervaporation is a membrane separation technology that has had industrial application and which is the subject of ongoing research. Two major factors are important in judging the quality of a membrane: selectivity and permeation flux. Although many types of materials can be used for the separation layer, zeolites will be the material considered in this thesis. A simple mathematical model has been developed to demonstrate the inter-relationships between relative permeation flux, reduced selectivity, and the relative resistance to mass transfer of the support to the zeolite layer. The model was applied to several membranes from our laboratory and to two examples from the literature. The model offers a useful way of conceptualizing membrane performance and facilitates the comparison of different membrane performances. The model predicts the effect of different supports on zeolite supported membrane performance.
Date Created
2014
Agent

Synthesis and carbon dioxide adsorption properties of amine modified particulate silica aerogel sorbents

152890-Thumbnail Image.png
Description
Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including

Post-combustion carbon capture is a viable option for reducing CO2 greenhouse gas emissions, and one potentially promising technology for this route is adsorption using chemically and physically based sorbents. A number of exceptional CO2 sorbents materials have been prepared including metal organic frameworks, zeolites, and carbon based materials. One particular group of capable materials are amine based solid sorbents that has shown to possess high adsorption capacities and favorable adsorption kinetics. A key variable in the synthesis of an amine based sorbent is the support which acts as the platform for the amine modification. Aerogels, due to their high porosities and surface areas, appear to be a promising support for an amine modified CO2 sorbent. Therefore, in order to develop a commercially viable CO2 sorbent, particulate aerogels manufactured by Cabot Corporation through an economical and proprietary ambient drying process were modified with amines using a variety of functionalization methods. Two methods of physical impregnation of the amino polymer TEPA were performed in order to observe the performance as well as understand the effects of how the TEPA distribution is affected by the method of introduction. Both samples showed excellent adsorption capacities but poor cyclic stability for lack of any covalent attachment. Furthermore the method of TEPA impregnation seems to be independent on how the polymer will be distributed in the pore space of aerogel. The last two methods utilized involved covalently attaching amino silanes to the surface silanols of the aerogel. One method was performed in the liquid phase under anhydrous and hydrous conditions. The materials developed through the hydrous method have much greater adsorption capacities relative to the anhydrous sample as a result of the greater amine content present in the hydrous sample. Water is another source of silylation where additional silanes can attach and polymerize. These samples also possessed stable cyclic stability after 100 adsorption/regeneration cycles. The other method of grafting was performed in the gas phase through ALD. These samples possessed exceptionally high amine efficiencies and levels of N content without damaging the microstructure of the aerogel in contrast to the liquid phase grafted sorbents.
Date Created
2014
Agent

Continuous in-situ removal of butanol from clostridium acetobutylicum fermentations via expanded-bed adsorption

151601-Thumbnail Image.png
Description
The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current automotive infrastructure. Additionally, butanol offers the same environmentally friendly effects as ethanol, but possess a 23% higher energy density. Clostridium acetobutylicum is an anaerobic bacterium that can ferment renewable biomass-derived sugars into butanol. However, this fermentation becomes limited by relatively low butanol concentrations (1.3% w/v), making this process uneconomical. To economically produce butanol, the in-situ product removal (ISPR) strategy is employed to the butanol fermentation. ISPR entails the removal of butanol as it is produced, effectively avoiding the toxicity limit and allowing for increased overall butanol production. This thesis explores the application of ISPR through integration of expanded-bed adsorption (EBA) with the C. acetobutylicum butanol fermentations. The goal is to enhance volumetric productivity and to develop a semi-continuous biofuel production process. The hydrophobic polymer resin adsorbent Dowex Optipore L-493 was characterized in cell-free studies to determine the impact of adsorbent mass and circulation rate on butanol loading capacity and removal rate. Additionally, the EBA column was optimized to use a superficial velocity of 9.5 cm/min and a resin fraction of 50 g/L. When EBA was applied to a fed-batch butanol fermentation performed under optimal operating conditions, a total of 25.5 g butanol was produced in 120 h, corresponding to an average yield on glucose of 18.6%. At this level, integration of EBA for in situ butanol recovered enabled the production of 33% more butanol than the control fermentation. These results are very promising for the production of butanol as a biofuel. Future work will entail the optimization of the fed-batch process for higher glucose utilization and development of a reliable butanol recovery system from the resin.
Date Created
2013
Agent

Carbonate-ceramic dual-phase membranes for high temperature carbon dioxide separation

149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
Date Created
2011
Agent