The Functions of LKB1 in the Development of Inhibitory Interneurons in the Cerebral Cortex

161234-Thumbnail Image.png
Description
LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to

LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to benign and malignant tumors. Past studies have focused on defining LKB1 functions in various tissue types, for example LKB1 regulates axonal polarization and dendritic arborization by activating downstream substrates in excitatory neurons of the developing neocortex. However, the implications of LKB1, specifically in the developing cortical inhibitory GABAergic interneurons is unknown. LKB1 deletion was achieved by using Cre-lox technology to induce LKB1 loss in cells localized in the medial ganglionic eminence (MGE) that express Nkx2.1 and generate cortical GABAergic neurons. In this research study it is suggested that LKB1 plays a role in GABAergic interneuron specification by specifically regulating the expression of parvalbumin during the development of fast-spiking interneurons. Preliminary evidence suggest LKB1 also modulates the number of Nkx2.1-derived oligodendrocytes in the cortex. By utilizing a GABAergic neuron specific LKB1 deletion mutant, we confirmed that the loss of parvalbumin expression was due to a GABAergic neuron autonomous function for LKB1. These data provide new insight into the cell specific functions of LKB1 in the developing brain.
Date Created
2019
Agent

Establishing a Model of Opioid and Cocaine Co-Use

131979-Thumbnail Image.png
Description
With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with

With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with the analysis of withdrawal symptomatology driven by opioid withdrawal. The independent variables were dichotomized into the control group (food/cocaine) and the experimental group (oxycodone/cocaine). We hypothesized that more cocaine would be self-administered on the first day of oxycodone withdrawal. In addition, we hypothesized that somatic signs of withdrawal would increase at 16 hours post-oxycodone self-administration. Finally, we hypothesized that cocaine intake during oxycodone withdrawal would potentiate subsequent oxycodone self-administration. Our findings revealed that animals readily discriminated between the active (food or oxycodone) and inactive levers - but will however require more animals to achieve the appropriate power. Further, the average cocaine infusions across phases exhibited significance between the oxycodone/cocaine and food/cocaine group, with the average cocaine infusions being lower in food than in oxycodone-experienced animals. This implies that the exacerbation of the sequential co-use pattern in this case yields an increase in cocaine infusions that may be driven by oxycodone withdrawal. Further, to characterize withdrawal from oxycodone self-administration, somatic signs were examined at either 0 or 16 hrs following completion of oxycodone self-administration. The oxycodone/cocaine group exhibited significantly lower body temperature at 16 hrs of oxycodone withdrawal compared to 0 hrs. No differences in somatic signs of withdrawal in the food/cocaine group was found between the two timepoints. Oxycodone withdrawal was not found to potentiate any subsequent self-administration of oxycodone. Future research is needed to uncover neurobiological underpinnings of motivated polysubstance use in order to discover novel pharmacotherapeutic treatments to decrease co-use of drugs of abuse. Overall, this study is of importance as it is the first to establish a working preclinical model of a clinically-relevant pattern of polysubstance use. By doing so, it enables an exceptional opportunity to examine co-use in a highly-controlled setting.
Date Created
2020-05
Agent

Progestogens impact cognition during the transition to menopause in the rat: dissociation of progestogen- and memory- type

157790-Thumbnail Image.png
Description
Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair

Progestogens, such as progesterone (P4), medroxyprogesterone acetate (MPA), and micronized progesterone (mP4), are given to ovary-intact women during the transition to menopause to attenuate heavy uterine bleeding and other symptoms. Both progesterone and MPA administration have been shown to impair cognition in ovariectomized (Ovx) rats compared to vehicle-treated controls. mP4, however, has yet to be investigated for cognitive effects in a preclinical setting. Further, progestogens affect the GABA (-aminobutyric acid) ergic system, specifically glutamic acid decarboxylase (GAD) the rate limiting enzyme necessary for synthesizing GABA. The goal of this experiment was to investigate the cognitive impact of P4, MPA, and mP4, in an ovary-intact transitional menopause model using 4-vinylcyclohexene diepoxide (VCD) and assess whether these potential changes were related to the GABAergic system. One group of rats received vehicle injections, and the remainder of the groups received VCD to induce follicular depletion, modeling transitional menopause in women. Vehicle or hormone administration began during perimenopause to model the time period when women often take progestogens alone. Rats then underwent testing to assess spatial working and reference memory in the water radial-arm maze (WRAM) and spatial reference memory in the Morris water maze (MWM). Results indicate that P4 and MPA improved learning for working memory measure, but only MPA impaired memory retention in the WRAM. For the WRAM reference memory measure, VCD only treated rats showed impaired learning and memory retention compared to vehicle controls; progestogens did not impact this impairment. Although GAD expression did not differ between treatment groups, in general, there was a relationship between GAD expression and WRAM performance such that rats that tended to have higher GAD levels also tended to make more WRAM working memory errors. Thus, while P4 and MPA have been previously shown to impair cognition in an Ovx model, giving these hormones early in an ovary-intact perimenopause model elicits divergent effects, such that these progestogens can improve cognition. Additionally, these findings suggest that the cognitive changes seen herein are related to the interaction between progestogens and the GABAergic system. Further investigation into progestogens is warranted to fully understand their impact on cognition given the importance of utilizing progestogens in the clinic.
Date Created
2019
Agent

Hyperactive ERK/MAPK Regulates Cortical GABAergic Neuron Development

132891-Thumbnail Image.png
Description
Aberrant signaling through the canonical RAS/RAF/MEK/ERK (ERK/MAPK) pathway leads to the pathology of a group of neurodevelopmental disorders called RASopathies. RASopathies are caused by germline mutations in the ERK/MAPK pathway and have an incidence of approximately 1:2000 births. The majority

Aberrant signaling through the canonical RAS/RAF/MEK/ERK (ERK/MAPK) pathway leads to the pathology of a group of neurodevelopmental disorders called RASopathies. RASopathies are caused by germline mutations in the ERK/MAPK pathway and have an incidence of approximately 1:2000 births. The majority of RASopathies stem from mutations that cause gain-of-function in the ERK/MAPK pathway. In this study, we have begun to unravel the roles that GABAergic interneurons play in the pathology of RASopathies. Our data demonstrate that gain-of-function ERK/MAPK signaling expressed in a GABAergic interneuron-specific fashion leads to forebrain hyperexcitability in mutant mice. Further, some GABAergic interneurons experience activated-caspase 3 mediated apoptosis in the embryonic subpallium, leading to a loss of PV-expressing interneurons in the somatosensory cortex. We found that pharmaceutical intervention during embryogenesis using a MEK1 inhibitor may be effective in preventing apoptosis of these neurons. Future work is still needed to understand the mechanism of the death of GABAergic interneurons and to further pursue therapeutic approaches. Taken together, this study suggests potential roles of cortical GABAergic interneurons in ERK/MAPK-linked pathologies and indicates possible approaches to provide therapy for these conditions.
Date Created
2019-05
Agent

The Effects of a Novel Serotonin-7 Receptor (5-HT7R) Antagonist, MC-RG19, on Cocaine-Related Behaviors

133302-Thumbnail Image.png
Description
The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one of the least rigorously studied. However, the 5-HT7R has been

The serotonin (5-hydroxytryptamine, 5-HT) system is implicated in the study of drug addiction. Of the 14 known serotonin receptor subtypes, the 5-HT7R is the most recently discovered and, therefore, one of the least rigorously studied. However, the 5-HT7R has been shown to play a role in multiple psychiatric conditions, including depression, anxiety, and alcoholism. This is not surprising, as the 5-HT7R is expressed in brain regions associated with emotion and reward, such as the amygdala, dorsal raphe nucleus, and striatum. MC-RG19 is a novel 5-HT7R antagonist which has >114-fold selectivity for the 5-HT7 over other serotonin receptors. This compound was developed by our collaborators at the Temple University School of Pharmacy. Due to this specificity, and the implications of the 5-HT7 in behavior, we hypothesized that MC-RG19 would have an effect on addiction-related behaviors. We investigated the effects of MC-RG19 on spontaneous locomotion, cue-induced reinstatement, and cocaine/sucrose multiple schedule self-administration. We observed a dose-dependent decrease in spontaneous locomotor activity with significance at a MC-RG19 dose of 10 mg/kg. A dose of 5.6 mg/kg, which did not significantly decrease locomotion, significantly reduces cocaine-seeking behavior (active lever pressing) in response to the reintroduction of drug-paired cues after a period of extinction. No dose (3, 5.6, or 10 mg/kg) produced a significant effect on a multiple schedule of self-administration with alternating availability of sucrose and cocaine as the reinforcer. These results indicate that MC-RG19 has an effect on the incentive \u2014 motivational properties of reward-paired cues.
Date Created
2018-05
Agent

The Effect of Ovarian Hormonal Status on 5HT1B Receptor Modulation of Cocaine Self-Administration

Description
Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in cocaine-self administration in male rats during maintenance. However, these studies

Cocaine is a powerful psychomotor stimulant that can affect serotonin (5HT), dopamine, and norepinephrine systems in the brain. Previous studies with 5HT1B receptor agonist, CP94253, have shown dose-dependent decreases in cocaine-self administration in male rats during maintenance. However, these studies do not take into consideration sex differences between male rats and female rats. Female rats introduce a new complexity because they constantly undergo an estrous cycle that consists of four phases, metestrus, diestrus, proestrus, and estrus. It was hypothesized that cocaine infusions and active lever response rates would greatly decrease during proestrus and estrus in comparison to metestrus and diestrus due to hormonal level differences of LH, FSH, progesterone, and estradiol. In this study, female rats were trained to self-administer a training dose of 0.75 mg/kg/infusion on a fixed progressive ratio (FR5). Rats were then pretreated with CP94253 to test the effects of this 5HT1B agonist on female rat cocaine self-administration during the estrous cycle. Results showed there was no three-way interaction between cycle phase, pretreatment, and cocaine dose on infusions or active lever responses. However, pretreatment with CP94253 decreased cocaine intake and active lever responses at high cocaine doses, regardless of cycle phase. Lastly, there was a two-way interaction between pretreatment and cycle phase in which active lever responses decreased during diestrus and proestrus. These results imply that CP94253 enhances cocaine's effect regardless of cycle phase. Future work can work with ovariectomized (OVX) female rats to observe cocaine self-administration during controlled cycle phases.
Date Created
2018-05
Agent

The Role of Calcium Channel Genes in Childhood Psychiatric Symptoms

133481-Thumbnail Image.png
Description
Adolescent mental health problems are predicative of future problems such as depression, anxiety, ADHD, compulsive disorder, and substance use. Previous studies show that in emerging adulthood, the high prevalence and associated burdens of psychopathology increase vulnerability to disorders. These diagnoses

Adolescent mental health problems are predicative of future problems such as depression, anxiety, ADHD, compulsive disorder, and substance use. Previous studies show that in emerging adulthood, the high prevalence and associated burdens of psychopathology increase vulnerability to disorders. These diagnoses are less common but are more severe and chronic (Tanner et al., 2009). The causes of these disorders are still being explored with recent studies showing that these mental health problems are genetically influenced. This makes understanding which gene that corresponds to what biological system is important in determining mental health. From recent studies, genes that code for calcium channels are good candidates for mental health problems. These voltage-gated channels are important mediators for physiological functions in the central nervous system and their activation provides unique responses within the brain. In a previous study, it supports the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders and other mental illness (Imbrici et al., 2013). The purpose of the study was to examine if calcium channel genes influence childhood psychiatric symptoms. The first goal of this study was to form a polygenic risk score representing genetic influence on calcium channels. The second goal was to use this risk score in genetic association analyses to understand genetic risk for childhood psychopathology. Overall, the study did accomplish the goal as a polygenic risk score was created and was used to examine genetic association with child psychopathology. Based on the results, the polygenic risk score was not correlated with either parent or child- reported symptoms; however, results did show that disorders were related to each other and differed by race.
Date Created
2018-05
Agent

Analysis of Economic Demand for Nicotine Using an Abbreviated Behavioral Economic Protocol in Rats

134051-Thumbnail Image.png
Description
Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose

Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose reduction been evaluated in terms of behavioral economic characteristics of demand and elasticity been evaluated for reduced doses of nicotine. Using a rat model, we first evaluated the comparability of between- and within-session protocols for establishing characteristics of demand and elasticity for nicotine to shorten experimental timelines for this study and future studies. We then tested environmental enrichment and sex as factors of elasticity of demand for nicotine. Using a rat model of relapse to cues, we also examined the effects of nicotine dose-reduction on vulnerability to relapse. We found differences in maximum consumption and demand between the between- and within-session protocols, as well as sex differences in elasticity of demand on the within-session protocol where male demand was more elastic than female demand. Additionally, we found that enrichment significantly increased elasticity of demand for nicotine for both males and females. Finally, preliminary analyses revealed that nicotine dose reduction yields more inelastic demand and higher maximum consumption, and these outcomes predict increased time to extinction of the association between nicotine and contingent cues, and increased rates of relapse. These studies highlight the usefulness and validity of within-session protocols, and also illustrate the necessity for rigorous testing of forced dose reduction on nicotine vulnerability.
Date Created
2017-12
Agent

Suppressive and Enhancing Effects of Nicotine on Food-Seeking Behavior

134958-Thumbnail Image.png
Description
The present study examined how systemic low doses of nicotine affect the microstructure of food-reinforced behavior in rats. Rats were given an acute saline or nicotine treatment (0.1-0.6 mg/kg, resting at least 48 h between injections), and a chronic saline

The present study examined how systemic low doses of nicotine affect the microstructure of food-reinforced behavior in rats. Rats were given an acute saline or nicotine treatment (0.1-0.6 mg/kg, resting at least 48 h between injections), and a chronic saline or nicotine treatment (0.3 mg/kg for 10 consecutive days). Immediately after treatment, rats were required to press a lever to obtain food, whose availability was unpredictable, but programmed at a constant rate (on average every 80 s). Acute nicotine dose-dependently suppressed behavior prior to the delivery of the first reinforcer, but enhanced food-reinforced behavior afterwards. This effect was primarily observed in the time it took rats to initiate food-seeking behavior, and not in the food-seeking behavior itself. A pre-feeding control procedure suggests that these effects cannot be explained only by changes in appetite. Over the course of chronic nicotine exposure, tolerance developed to the suppressive, but not to the enhancing effects of nicotine on food-seeking behavior. These results suggest that ostensive sensitization effects of nicotine on behavior may instead reflect a tolerance for its suppressive effects on behavior.
Date Created
2017-05
Agent

The role of nucleus accumbens NMDA receptors on rapid, transient synaptic plasticity induced by cued nicotine reinstatement

134699-Thumbnail Image.png
Description
Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement

Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced reinstatement model to examine rapid, transient synaptic plasticity (t-SP) induced by nicotine cue-triggered motivation. Although preliminary, treatment with the NMDA GluN2B subunit antagonist, ifenprodil, reduced reinstated nicotine seeking, and increased the percentage of spines with smaller head diameters. Thus, future studies are needed to fully parse out the role of NAcore GluN2B receptors in cued nicotine seeking and t-SP.
Date Created
2017-05
Agent