Systemic Exposure to the HIV Protein gp120 Prevents the Inhibition of Cue-Induced Cocaine Seeking by the Novel Dopamine D3 Receptor Partial Agonist MC-25-41

161222-Thumbnail Image.png
Description

Use of psychostimulants, such as cocaine, is associated with an increased risk of human immunodeficiency virus (HIV) infection. Dopaminergic signaling within the nucleus accumbens (NAc) is critically implicated in both disease states, mediating the addictive and reinforcing effects of cocaine

Use of psychostimulants, such as cocaine, is associated with an increased risk of human immunodeficiency virus (HIV) infection. Dopaminergic signaling within the nucleus accumbens (NAc) is critically implicated in both disease states, mediating the addictive and reinforcing effects of cocaine and perpetuating HIV replication throughout the central nervous system (CNS). Cocaine and HIV induce neurobehavioral deficits separately; however, little is known regarding how they interact to dysregulate neuroimmune function or how this impacts relapse vulnerability. We have previously shown that inhibition of dopamine D3 receptor (D3R) signaling using MC-25-41, a novel and highly selective D3R partial agonist, attenuates cocaine-seeking behavior. Here, we sought to characterize changes in neuroimmune function in a rat model of combined HIV and cocaine use disorders across abstinence and examined the therapeutic efficacy of MC-25-41 in the presence of this comorbidity. Male rats were systemically treated with the HIV protein gp120 after establishing a history of cocaine self-administration and then, following 21 days of abstinence, were administered a systemic injection of MC-25-41 (10 mg/kg) prior to cue reactivity testing. Glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1) immunoreactivity were analyzed after 5 or 21 days of cocaine abstinence as an index of glial cell levels. We demonstrate that inhibition of D3R signaling significantly attenuates cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, we show that NAc core GFAP and Iba1 expression is impaired by 5 days of abstinence, which persists into protracted abstinence and cue reactivity testing. However, we also demonstrate that neither gp120 nor D3R inhibition significantly altered NAc core GFAP or Iba1 expression. Altogether, these results reveal significant changes in glial cell function across cocaine abstinence and unique behavioral interactions with gp120 may inhibit the effectiveness of medication regimens, which highlights the need to consider these comorbidities when treating HIV infection.

Date Created
2021-12
Agent

Unpredictable, intermittent, chronic stress may increase dendritic complexity of short shaft hippocampal neurons

130879-Thumbnail Image.png
Description
Major Depressive Disorder (MDD) affects over 300 million people worldwide, with the hippocampus showing decreased volume and activity in patients with MDD. The current study investigated whether a novel preclinical model of depression, unpredictable intermittent restraint (UIR), would decrease hippocampal

Major Depressive Disorder (MDD) affects over 300 million people worldwide, with the hippocampus showing decreased volume and activity in patients with MDD. The current study investigated whether a novel preclinical model of depression, unpredictable intermittent restraint (UIR), would decrease hippocampal neuronal dendritic complexity. Adult Sprague Dawley rats (24 male, 24 female) were equally divided into 4 groups: control males (CON-M), UIR males (UIR-M), control females (CON-F) and UIR females (UIR-F). UIR groups received restraint and shaking on an orbital shaker on a randomized schedule for 30 or 60 minutes/day for two to six days in a row for 26 days (21 total UIR days) before behavioral testing commenced. UIR continued and was interspersed between behavioral test days. At the end of behavioral testing, brains were processed. The behavior is published and not part of my honor’s thesis; my contribution involved quantifying and analyzing neurons in the hippocampus. Several neuronal types are found in the CA3 subregion of the hippocampus and I focused on short shaft (SS) neurons, which show different sensitivities to stress than the more common long shaft (LS) variety. Brains sections were mounted to slides and Golgi stained. SS neurons were drawn using a microscope with camera lucida attachment and quantified using the number of bifurcations and dendritic intersections as metrics for dendritic complexity in the apical and basal areas separately. The hypothesis that SS neurons in the CA3 region of the hippocampus would exhibit apical dendritic simplification in both sexes after UIR was not supported by our findings. In contrast, following UIR, SS apical dendrites were more complex in both sexes compared to controls. Although unexpected, we believe that the UIR paradigm was an effective stressor, robust enough to illicit neuronal adaptations. It appears that the time from the end of UIR to when the brain tissue was collected, or the post-stress recovery period, and/or repeated behavioral testing may have played a role in the observed increased neuronal complexity. Future studies are needed to parse out these potential effects.
Date Created
2020-12
Agent

Does chronic unpredictable restraint produce dendritic retraction in long-shaft CA3 hippocampal neurons?

131000-Thumbnail Image.png
Description
Major Depressive Disorder (MDD) is a widespread mood disorder that affects more than 300 million people worldwide and yet, high relapse rates persist. This current study aimed to use an animal model for depression, unpredictable intermittent restraint (UIR), to investigate

Major Depressive Disorder (MDD) is a widespread mood disorder that affects more than 300 million people worldwide and yet, high relapse rates persist. This current study aimed to use an animal model for depression, unpredictable intermittent restraint (UIR), to investigate changes in a subset of neurons within the hippocampus, a region of high susceptibility in MDD. Adult male and female Sprague-Dawley rats were randomly assigned to four treatment groups based on sex (n = 48, n = 12/group). Half of the rats underwent UIR that involved restraint with orbital shaking (30 min or 1 h) for 2-6 consecutive days, followed by one or two days of no stressors; the other half of the rats were undisturbed (CON). UIR rats were stressed for 28 days (21 days of actual stressors) before behavioral testing began with UIR continuing between testing days for nearly 70 days. Rats were then euthanized between 9 and 11 days after the last UIR session. Brains were processed for Golgi stain and long-shaft (LS) neurons within the hippocampal CA3a and CA3b regions were quantified for dendritic complexity using a Camera Lucida attachment. Our findings failed to support our hypothesis that UIR would produce apical dendritic retraction in CA3 hippocampal LS neurons in both males and females. Given that UIR failed to produce CA3 apical dendritic retraction in males, which is commonly observed in the literature, we discuss several reasons for these findings including, time from the end of UIR to when brains were sampled, and the effects of repeated cognitive testing. Given our published findings that UIR impaired spatial ability in males, but not females, we believe that UIR holds validity as a chronic stress paradigm, as UIR attenuated body weight gain in both males and females and produced reductions in thymus gland weight in UIR males. These findings corroborate UIR as an effective stressor in males and warrant further research into the timing of UIR-induced changes in hippocampal CA3 apical dendritic morphology.
Date Created
2020-12
Agent

Establishing a Model of Opioid and Cocaine Co-Use

131979-Thumbnail Image.png
Description
With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with

With opioid use disorder (OUD) being an epidemic, it is important to investigate the mechanisms as to why this is so. This study established a self-administration paradigm to model and investigate the mechanisms of polysubstance, sequential use in conjunction with the analysis of withdrawal symptomatology driven by opioid withdrawal. The independent variables were dichotomized into the control group (food/cocaine) and the experimental group (oxycodone/cocaine). We hypothesized that more cocaine would be self-administered on the first day of oxycodone withdrawal. In addition, we hypothesized that somatic signs of withdrawal would increase at 16 hours post-oxycodone self-administration. Finally, we hypothesized that cocaine intake during oxycodone withdrawal would potentiate subsequent oxycodone self-administration. Our findings revealed that animals readily discriminated between the active (food or oxycodone) and inactive levers - but will however require more animals to achieve the appropriate power. Further, the average cocaine infusions across phases exhibited significance between the oxycodone/cocaine and food/cocaine group, with the average cocaine infusions being lower in food than in oxycodone-experienced animals. This implies that the exacerbation of the sequential co-use pattern in this case yields an increase in cocaine infusions that may be driven by oxycodone withdrawal. Further, to characterize withdrawal from oxycodone self-administration, somatic signs were examined at either 0 or 16 hrs following completion of oxycodone self-administration. The oxycodone/cocaine group exhibited significantly lower body temperature at 16 hrs of oxycodone withdrawal compared to 0 hrs. No differences in somatic signs of withdrawal in the food/cocaine group was found between the two timepoints. Oxycodone withdrawal was not found to potentiate any subsequent self-administration of oxycodone. Future research is needed to uncover neurobiological underpinnings of motivated polysubstance use in order to discover novel pharmacotherapeutic treatments to decrease co-use of drugs of abuse. Overall, this study is of importance as it is the first to establish a working preclinical model of a clinically-relevant pattern of polysubstance use. By doing so, it enables an exceptional opportunity to examine co-use in a highly-controlled setting.
Date Created
2020-05
Agent

Molecular Analysis of Lenalidomide Modulation of Alzheimer's Disease Pathology

133679-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and,

Alzheimer’s disease (AD) is a progressive cognitive and behavior disorder that is characterized by the deposition of extracellular Aβ plaques, intracellular neurofibrillary tangles, and neuroinflammation. Aβ is generated by cleavage of the amyloid precursor protein (APP) by β-secretase (BACE1) and, subsequently, y- secretase. In recent years, there has been an increasing interest in studying and understanding inflammation as a therapeutic target for AD. Inflammation manifests in the brain in the form of activated microglia and astrocytes. These cells are able to release high levels of inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α). TNF-α is a major cytokine, which is involved in early inflammatory events and plays a role in the progression of AD pathology. There are currently no treatments that target chronic neuroinflammation. However, previous work in our laboratory with transgenic mice modeling AD suggested that the anti-cancer drug lenalidomide could lower neuroinflammation and slow AD progression, though the cellular and molecular mechanisms are yet to be elucidated. Here we hypothesized that lenalidomide can modulate TNF-α production in microglia and decrease amyloidogenesis. Using immortal cell lines mimicking several brain cell types, we discovered that lenalidomide is likely to decrease inflammation by modulating microglia cells rather than neurons or astrocytes. In addition, the drug may prevent the overexpression of BACE1 upon inflammation, thus blocking the overproduction of Aβ. If confirmed, these results could lead to a better understanding of how inflammation regulates Aβ synthesis and provide novel cellular and molecular therapeutic targets to control the progression AD.
Date Created
2018-05
Agent

Analysis of Economic Demand for Nicotine Using an Abbreviated Behavioral Economic Protocol in Rats

134051-Thumbnail Image.png
Description
Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose

Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose reduction been evaluated in terms of behavioral economic characteristics of demand and elasticity been evaluated for reduced doses of nicotine. Using a rat model, we first evaluated the comparability of between- and within-session protocols for establishing characteristics of demand and elasticity for nicotine to shorten experimental timelines for this study and future studies. We then tested environmental enrichment and sex as factors of elasticity of demand for nicotine. Using a rat model of relapse to cues, we also examined the effects of nicotine dose-reduction on vulnerability to relapse. We found differences in maximum consumption and demand between the between- and within-session protocols, as well as sex differences in elasticity of demand on the within-session protocol where male demand was more elastic than female demand. Additionally, we found that enrichment significantly increased elasticity of demand for nicotine for both males and females. Finally, preliminary analyses revealed that nicotine dose reduction yields more inelastic demand and higher maximum consumption, and these outcomes predict increased time to extinction of the association between nicotine and contingent cues, and increased rates of relapse. These studies highlight the usefulness and validity of within-session protocols, and also illustrate the necessity for rigorous testing of forced dose reduction on nicotine vulnerability.
Date Created
2017-12
Agent

The Opioid Epidemic: Impact of Heroin on Prosocial Interests in Rodents

134054-Thumbnail Image.png
Description
Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models

Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models of addiction, social interaction can prevent or reverse the conditioned rewarding effects of cocaine. This study sought to determine if social interaction would prevent or diminish a conditioned preference for a heroin-paired context. Following establishment of baseline place preference, adult male Sprague-Dawley rats underwent once daily conditioning with either saline, heroin (1 mg/kg), or the animal's cage-mate for a total of 8 conditioning sessions. Assessment of post-conditioning place preference revealed that both the heroin injections and the presence of the cage-mate produced a place preference . In contrast to the findings of previous studies using cocaine as the conditioning drug, it was determined that rats preferred the heroin-paired context over that paired with the cage-mate.. These findings suggest that the protective effects of social interaction found in prior studies using cocaine as the conditioning drug may not extend to opiates, perhaps a result of stronger contextual conditioning and/or rewarding effects of this class of abused drugs.
Date Created
2017-12
Agent

The Relation between Anxiety and Conditioned Place Preference to Methamphetamine in Female versus Male Rats

Description
Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous

Females are highly vulnerable to the effects of methamphetamine, and understanding the mechanisms of this is critical to addressing methamphetamine use as a public health issue. Hormones may play a role in methamphetamine sensitivity; thus, the fluctuation of various endogenous peptides during the postpartum experience is of interest. This honors thesis project explored the relation between anxiety-like behavior, as measured by activity in an open field, and conditioned place preference to methamphetamine in female versus male rats. The behavior of postpartum as well as virgin female rats was compared to that of male rats. There was not a significant difference between males and females in conditioned place preference to methamphetamine, yet females showed higher locomotor activity in response to the drug as well as increased anxiety-like behavior in open field testing as compared to males. Further study is vital to comprehending the complex mechanisms of sex differences in methamphetamine addiction.
Date Created
2016-05
Agent

Dysregulated ERK/MAPK Signaling in RASopathy Animal Model Systems Leads to a Decrease in mTOR Expression and Activation of Translational Machinery

134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
Date Created
2017-05
Agent

A Determination of the Hedonic Properties of Synthetic Cathinones 4-MEC and MDPV Through the Use of Intracranial Self-Stimulation

137695-Thumbnail Image.png
Description
The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of

The use of synthetic cathinones or "bath salts" has risen dramatically in recent years with one of the most popular being Methylendioxypyrovalerone (MDPV). Following the temporary legislative ban on the sale and distribution of this compound , a multitude of other cathinone derivatives have been synthesized. The current study seeks to compare the abuse potential of MDPV with one of the emergent synthetic cathinones 4-methylethcathinone (4-MEC), based on their respective ability to lower current thresholds in an intracranial self-stimulation (ICSS) paradigm. Following acute administration (0.1, 0.5, 1 and 2 mg/kg i.p.) MDPV was found to significantly lower ICSS thresholds at all doses tested (F4,35=11.549, p<0.001). However, following acute administration (0.3,1,3,10,30 mg/kg i.p) 4-MEC produced no significant ICSS threshold depression (F5,135= 0.622, p = 0.684). Together these findings suggest that while MDPV may possess significant abuse potential, other synthetic cathinones such as 4-MEC may have a drastically reduced potential for abuse.
Date Created
2013-05
Agent