Online embedded assessment for Dragoon, intelligent tutoring system

154253-Thumbnail Image.png
Description
Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a

Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a test. This thesis describes the development and comparison of several student models for Dragoon, an intelligent tutoring system. All the models were instances of Bayesian Knowledge Tracing, a standard method. Several methods of parameterization and calibration were explored using two recently developed toolkits, FAST and BNT-SM that replaces constant-valued parameters with logistic regressions. The evaluation was done by calculating the fit of the models to data from human subjects and by assessing the accuracy of their assessment of simulated students. The student models created using node properties as subskills were superior to coarse-grained, skill-only models. Adding this extra level of representation to emission parameters was superior to adding it to transmission parameters. Adding difficulty parameters did not improve fit, contrary to standard practice in psychometrics.
Date Created
2015
Agent

Biology question generation from a semantic network

154146-Thumbnail Image.png
Description
Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to

Science instructors need questions for use in exams, homework assignments, class discussions, reviews, and other instructional activities. Textbooks never have enough questions, so instructors must find them from other sources or generate their own questions. In order to supply instructors with biology questions, a semantic network approach was developed for generating open response biology questions. The generated questions were compared to professional authorized questions.

To boost students’ learning experience, adaptive selection was built on the generated questions. Bayesian Knowledge Tracing was used as embedded assessment of the student’s current competence so that a suitable question could be selected based on the student’s previous performance. A between-subjects experiment with 42 participants was performed, where half of the participants studied with adaptive selected questions and the rest studied with mal-adaptive order of questions. Both groups significantly improved their test scores, and the participants in adaptive group registered larger learning gains than participants in the control group.

To explore the possibility of generating rich instructional feedback for machine-generated questions, a question-paragraph mapping task was identified. Given a set of questions and a list of paragraphs for a textbook, the goal of the task was to map the related paragraphs to each question. An algorithm was developed whose performance was comparable to human annotators.

A multiple-choice question with high quality distractors (incorrect answers) can be pedagogically valuable as well as being much easier to grade than open-response questions. Thus, an algorithm was developed to generate good distractors for multiple-choice questions. The machine-generated multiple-choice questions were compared to human-generated questions in terms of three measures: question difficulty, question discrimination and distractor usefulness. By recruiting 200 participants from Amazon Mechanical Turk, it turned out that the two types of questions performed very closely on all the three measures.
Date Created
2015
Agent

Identifying relevant interaction metrics for predicting student performance in a generic learning content management system

154101-Thumbnail Image.png
Description
The growing use of Learning Management Systems (LMS) in classrooms has enabled a great amount of data to be collected about the study behavior of students. Previously, research has been conducted to interpret the collected LMS usage data in order

The growing use of Learning Management Systems (LMS) in classrooms has enabled a great amount of data to be collected about the study behavior of students. Previously, research has been conducted to interpret the collected LMS usage data in order to find the most effective study habits for students. Professors can then use the interpretations to predict which students will perform well and which student will perform poorly in the rest of the course, allowing the professor to better provide assistance to students in need. However, these research attempts have largely analyzed metrics that are specific to certain graphical interfaces, ways of answering questions, or specific pages on an LMS. As a result, the analysis is only relevant to classrooms that use the specific LMS being analyzed.

For this thesis, behavior metrics obtained by the Organic Practice Environment (OPE) LMS at Arizona State University were compared to student performance in Dr. Ian Gould’s Organic Chemistry I course. Each metric gathered was generic enough to be potentially used by any LMS, allowing the results to be relevant to a larger amount of classrooms. By using a combination of bivariate correlation analysis, group mean comparisons, linear regression model generation, and outlier analysis, the metrics that correlate best to exam performance were identified. The results indicate that the total usage of the LMS, amount of cramming done before exams, correctness of the responses submitted, and duration of the responses submitted all demonstrate a strong correlation with exam scores.
Date Created
2015
Agent

Answering deep queries specified in natural language with respect to a frame based knowledge base and developing related natural language understanding components

154047-Thumbnail Image.png
Description
Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However,

Question Answering has been under active research for decades, but it has recently taken the spotlight following IBM Watson's success in Jeopardy! and digital assistants such as Apple's Siri, Google Now, and Microsoft Cortana through every smart-phone and browser. However, most of the research in Question Answering aims at factual questions rather than deep ones such as ``How'' and ``Why'' questions.

In this dissertation, I suggest a different approach in tackling this problem. We believe that the answers of deep questions need to be formally defined before found.

Because these answers must be defined based on something, it is better to be more structural in natural language text; I define Knowledge Description Graphs (KDGs), a graphical structure containing information about events, entities, and classes. We then propose formulations and algorithms to construct KDGs from a frame-based knowledge base, define the answers of various ``How'' and ``Why'' questions with respect to KDGs, and suggest how to obtain the answers from KDGs using Answer Set Programming. Moreover, I discuss how to derive missing information in constructing KDGs when the knowledge base is under-specified and how to answer many factual question types with respect to the knowledge base.

After having the answers of various questions with respect to a knowledge base, I extend our research to use natural language text in specifying deep questions and knowledge base, generate natural language text from those specification. Toward these goals, I developed NL2KR, a system which helps in translating natural language to formal language. I show NL2KR's use in translating ``How'' and ``Why'' questions, and generating simple natural language sentences from natural language KDG specification. Finally, I discuss applications of the components I developed in Natural Language Understanding.
Date Created
2015
Agent

Studying, Teaching and Applying Sustainability Visions Using Systems Modeling

129562-Thumbnail Image.png
Description

The objective of articulating sustainability visions through modeling is to enhance the outcomes and process of visioning in order to successfully move the system toward a desired state. Models emphasize approaches to develop visions that are viable and resilient and

The objective of articulating sustainability visions through modeling is to enhance the outcomes and process of visioning in order to successfully move the system toward a desired state. Models emphasize approaches to develop visions that are viable and resilient and are crafted to adhere to sustainability principles. This approach is largely assembled from visioning processes (resulting in descriptions of desirable future states generated from stakeholder values and preferences) and participatory modeling processes (resulting in systems-based representations of future states co-produced by experts and stakeholders). Vision modeling is distinct from normative scenarios and backcasting processes in that the structure and function of the future desirable state is explicitly articulated as a systems model. Crafting, representing and evaluating the future desirable state as a systems model in participatory settings is intended to support compliance with sustainability visioning quality criteria (visionary, sustainable, systemic, coherent, plausible, tangible, relevant, nuanced, motivational and shared) in order to develop rigorous and operationalizable visions. We provide two empirical examples to demonstrate the incorporation of vision modeling in research practice and education settings. In both settings, vision modeling was used to develop, represent, simulate and evaluate future desirable states. This allowed participants to better identify, explore and scrutinize sustainability solutions.

Date Created
2014-07-01
Agent

Spoken dialogue in face-to-face and remote collaborative learning environments

152976-Thumbnail Image.png
Description
Research in the learning sciences suggests that students learn better by collaborating with their peers than learning individually. Students working together as a group tend to generate new ideas more frequently and exhibit a higher level of reasoning. In this

Research in the learning sciences suggests that students learn better by collaborating with their peers than learning individually. Students working together as a group tend to generate new ideas more frequently and exhibit a higher level of reasoning. In this internet age with the advent of massive open online courses (MOOCs), students across the world are able to access and learn material remotely. This creates a need for tools that support distant or remote collaboration. In order to build such tools we need to understand the basic elements of remote collaboration and how it differs from traditional face-to-face collaboration.

The main goal of this thesis is to explore how spoken dialogue varies in face-to-face and remote collaborative learning settings. Speech data is collected from student participants solving mathematical problems collaboratively on a tablet. Spoken dialogue is analyzed based on conversational and acoustic features in both the settings. Looking for collaborative differences of transactivity and dialogue initiative, both settings are compared in detail using machine learning classification techniques based on acoustic and prosodic features of speech. Transactivity is defined as a joint construction of knowledge by peers. The main contributions of this thesis are: a speech corpus to analyze spoken dialogue in face-to-face and remote settings and an empirical analysis of conversation, collaboration, and speech prosody in both the settings. The results from the experiments show that amount of overlap is lower in remote dialogue than in the face-to-face setting. There is a significant difference in transactivity among strangers. My research benefits the computer-supported collaborative learning community by providing an analysis that can be used to build more efficient tools for supporting remote collaborative learning.
Date Created
2014
Agent

Using the tablet gestures and speech of pairs of students to classify their collaboration

152909-Thumbnail Image.png
Description
This thesis is an initial test of the hypothesis that superficial measures suffice for measuring collaboration among pairs of students solving complex math problems, where the degree of collaboration is categorized at a high level. Data were collected

in the

This thesis is an initial test of the hypothesis that superficial measures suffice for measuring collaboration among pairs of students solving complex math problems, where the degree of collaboration is categorized at a high level. Data were collected

in the form of logs from students' tablets and the vocal interaction between pairs of students. Thousands of different features were defined, and then extracted computationally from the audio and log data. Human coders used richer data (several video streams) and a thorough understand of the tasks to code episodes as

collaborative, cooperative or asymmetric contribution. Machine learning was used to induce a detector, based on random forests, that outputs one of these three codes for an episode given only a characterization of the episode in terms of superficial features. An overall accuracy of 92.00% (kappa = 0.82) was obtained when

comparing the detector's codes to the humans' codes. However, due irregularities in running the study (e.g., the tablet software kept crashing), these results should be viewed as preliminary.
Date Created
2014
Agent

An intelligent co-reference resolver for Winograd schema sentences containing resolved semantic entities

152168-Thumbnail Image.png
Description
There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as

There has been a lot of research in the field of artificial intelligence about thinking machines. Alan Turing proposed a test to observe a machine's intelligent behaviour with respect to natural language conversation. The Winograd schema challenge is suggested as an alternative, to the Turing test. It needs inferencing capabilities, reasoning abilities and background knowledge to get the answer right. It involves a coreference resolution task in which a machine is given a sentence containing a situation which involves two entities, one pronoun and some more information about the situation and the machine has to come up with the right resolution of a pronoun to one of the entities. The complexity of the task is increased with the fact that the Winograd sentences are not constrained by one domain or specific sentence structure and it also contains a lot of human proper names. This modification makes the task of association of entities, to one particular word in the sentence, to derive the answer, difficult. I have developed a pronoun resolver system for the confined domain Winograd sentences. I have developed a classifier or filter which takes input sentences and decides to accept or reject them based on a particular criteria. Once the sentence is accepted. I run parsers on it to obtain the detailed analysis. Furthermore I have developed four answering modules which use world knowledge and inferencing mechanisms to try and resolve the pronoun. The four techniques I use are : ConceptNet knowledgebase, Search engine pattern counts,Narrative event chains and sentiment analysis. I have developed a particular aggregation mechanism for the answers from these modules to arrive at a final answer. I have used caching technique for the association relations that I obtain for different modules, so as to boost the performance. I run my system on the standard ‘nyu dataset’ of Winograd sentences and questions. This dataset is then restricted, by my classifier, to 90 sentences. I evaluate my system on this 90 sentence dataset. When I compare my results against the state of the art system on the same dataset, I get nearly 4.5 % improvement in the restricted domain.
Date Created
2013
Agent

Conceptual understanding of multiplicative properties through endogenous digital game play

151040-Thumbnail Image.png
Description
This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to

This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of game performance. Three versions of an instructional game, Shipping Express, were designed for the purposes of this study. The endogenous version of Shipping Express integrated the associative and distributive properties of multiplication within the mechanics, while the exogenous version had the instructional content separate from game play. A total of 111 fourth and fifth graders were randomly assigned to one of three conditions (endogenous, exogenous, and control) and completed pre and posttest measures of conceptual understanding of the associative and distributive properties of multiplication, along with a questionnaire. The results revealed several significant results: 1) there was a significant difference between participants' change in scores on the measure of conceptual understanding of the associative property of multiplication, based on the version of Shipping Express they played. Participants who played the endogenous version of Shipping Express had on average higher gains in scores on the measure of conceptual understanding of the associative property of multiplication than those who played the other versions of Shipping Express; 2) performance on the measures of conceptual understanding of the distributive property collected prior to game play were related to performance within the endogenous game environment; and 3) participants who played the control version of Shipping Express were on average more likely to have a negative attitude towards continuing game play on their own compared to the other versions of the game. No significant differences were found in regards to changes in scores on the measure of conceptual understanding of the distributive property based on the version of Shipping Express played, post hoc pairwise comparisons, and changes on scores on question types within the conceptual understanding of the associative and distributive property of multiplication measures. The findings from this study provide some support for a move towards the design and development of endogenous instructional games. Additional implications for the learning through digital game play and future research directions are discussed.
Date Created
2012
Agent

Zazzer: forming friendships on digital social networks

150293-Thumbnail Image.png
Description
Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose

Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of introduction aren't effective enough to merit use over real word alternatives. This paper presents a novel digital social network emphasizing creating friendships. Research has shown video chat communication can reach in-person levels of trust; coupled with a game environment to ease the discomfort people often have interacting with strangers and a recommendation engine, Zazzer, the presented system, allows people to meet and get to know each other in a manner much more true to real life than traditional methods. Its network also allows players to continue to communicate afterwards. The evaluation looks at real world use, measuring the frequency with which players choose the video chat game versus alternative, more traditional methods of online introduction. It also looks at interactions after the initial meeting to discover how effective video chat games are in creating sticky social connections. After initial use it became apparent a critical mass of users would be necessary to draw strong conclusions, however the collected data seemed to give preliminary support to the idea that video chat games are more effective than traditional ways of meeting online in creating new relationships.
Date Created
2011
Agent