Assessing cognitive learning of analytical problem solving

150234-Thumbnail Image.png
Description
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such

Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts - abstraction, arrays of objects, and inheritance - in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
Date Created
2011
Agent

Analyzing student problem-solving behavior in a step-based tutor and understanding the effect of unsolicited hints

150224-Thumbnail Image.png
Description
Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on

Lots of previous studies have analyzed human tutoring at great depths and have shown expert human tutors to produce effect sizes, which is twice of that produced by an intelligent tutoring system (ITS). However, there has been no consensus on which factor makes them so effective. It is important to know this, so that same phenomena can be replicated in an ITS in order to achieve the same level of proficiency as expert human tutors. Also, to the best of my knowledge no one has looked at student reactions when they are working with a computer based tutor. The answers to both these questions are needed in order to build a highly effective computer-based tutor. My research focuses on the second question. In the first phase of my thesis, I analyzed the behavior of students when they were working with a step-based tutor Andes, using verbal-protocol analysis. The accomplishment of doing this was that I got to know of some ways in which students use a step-based tutor which can pave way for the creation of more effective computer-based tutors. I found from the first phase of the research that students often keep trying to fix errors by guessing repeatedly instead of asking for help by clicking the hint button. This phenomenon is known as hint refusal. Surprisingly, a large portion of the student's foundering was due to hint refusal. The hypothesis tested in the second phase of the research is that hint refusal can be significantly reduced and learning can be significantly increased if Andes uses more unsolicited hints and meta hints. An unsolicited hint is a hint that is given without the student asking for one. A meta-hint is like an unsolicited hint in that it is given without the student asking for it, but it just prompts the student to click on the hint button. Two versions of Andes were compared: the original version and a new version that gave more unsolicited and meta-hints. During a two-hour experiment, there were large, statistically reliable differences in several performance measures suggesting that the new policy was more effective.
Date Created
2011
Agent

Predicting creativity in the wild: experience sampling method and sociometric modeling of movement and face-to-face interactions in teams

149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
Date Created
2011
Agent

Extensions to a unified theory of the cognitive architecture

149622-Thumbnail Image.png
Description
Building computational models of human problem solving has been a longstanding goal in Artificial Intelligence research. The theories of cognitive architectures addressed this issue by embedding models of problem solving within them. This thesis presents an extended account of human

Building computational models of human problem solving has been a longstanding goal in Artificial Intelligence research. The theories of cognitive architectures addressed this issue by embedding models of problem solving within them. This thesis presents an extended account of human problem solving and describes its implementation within one such theory of cognitive architecture--ICARUS. The document begins by reviewing the standard theory of problem solving, along with how previous versions of ICARUS have incorporated and expanded on it. Next it discusses some limitations of the existing mechanism and proposes four extensions that eliminate these limitations, elaborate the framework along interesting dimensions, and bring it into closer alignment with human problem-solving abilities. After this, it presents evaluations on four domains that establish the benefits of these extensions. The results demonstrate the system's ability to solve problems in various domains and its generality. In closing, it outlines related work and notes promising directions for additional research.
Date Created
2011
Agent