In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above…
In nuclear physics, there is a discrepancy between theory and experiment concerning the number of existing nucleon resonances. Current models predict far more states than have been observed. In particular, few searches have found excited nucleon resonances with energies above 2.2 GeV in the K Lambda channel. To investigate high-mass nucleon resonances, efficiency-corrected yields of the reaction ep --> e K+ Lambda(1520) --> e K+ K- p in the center-of-mass energy range 2.1-4.5 GeV are constructed utilizing Jefferson Lab's CLAS12 detector. This paper presents the results of an analysis searching for high-mass nucleon resonances in the K Lambda channel between 2.1-4.5 GeV.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The spectra of predicted particles from elementary quark models (CQMs) are expansive, accurate for the low-lying spectra, but incomplete. The GlueX experiment at Jefferson Lab is a vehicle to study medium energy photoproduction of hadronic states. The primary goal of…
The spectra of predicted particles from elementary quark models (CQMs) are expansive, accurate for the low-lying spectra, but incomplete. The GlueX experiment at Jefferson Lab is a vehicle to study medium energy photoproduction of hadronic states. The primary goal of the GlueX collaboration is to study Quantum Chromodynamics (QCD, also known as the strong nuclear force) and the nature of quark confinement. The GlueX collaboration uses a polarized photon beam incident on a liquid hydrogen target (LH2) to investigate the aftermath of photon-proton interactions.The cascade baryons, denoted by Ξ, are defined by having two, second-generation, strange quarks with an additional first-generation light quark (u or d). Experimentally, few cascades have been discovered, which is the antithesis of what most models expect. The cascades have some favorable attributes but are difficult to detect because the production cross sections are small and direct production is unlikely. Fortunately, in the 12 GeV era of the GlueX experiment, there is sufficient energy, beam time and data analysis tools for the detection of excited cascade states and their properties.
From the reaction γp→K^+ K^+ Ξ^- π^0, the invariant mass spectra of Ξ^- π^0 system was surveyed for new possible resonances. The invariant mass spectrum has a strong Ξ(1530) signal with other smaller resonances throughout the spectrum. Preliminary cross sections for the Ξ(1530) that was photoproduced from the proton are presented at energies never before explored.
While the Ξ(1530) couples almost exclusively to the Ξπ channel, there is an easily identifiable Ξ(1690) signal decaying Ξπ. Through the use of a simultaneous fitting routing of the Ξ*- mass spectra, I was able to observe the Ξ(1690) decaying to the KΛ, as well as to the Ξ-π0 branch. With additional statistics, a measurement of the branching ratio should be possible.
Lastly, a partial wave analysis (PWA) was completed to verify that the total angular momentum of Ξ(1530) is J = 3/2 and consistent with having positive parity. Additionally, there is evidence of a potentially interesting feature slightly above the mass of the Ξ(1530) that should be more fully explored as new GlueX data becomes available.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The GlueX experiment housed in Hall D of the Thomas Jefferson National Laboratory was created to map the light meson spectrum in order to contribute to the Standard Model of particle physics by strengthening our understanding of the strong interaction.…
The GlueX experiment housed in Hall D of the Thomas Jefferson National Laboratory was created to map the light meson spectrum in order to contribute to the Standard Model of particle physics by strengthening our understanding of the strong interaction. GlueX is a medium-energy photoproduction experiment that utilizes a linearly polarized photon beam to create hadronic forms of matter. By mapping the light meson spectrum, the GlueX collaboration hopes to identify meson states forbidden by the Constituent Quark Model. As a main research objective, the GlueX collaboration is searching for hybrid $q\bar{q}g$ meson states that exhibit exotic quantum numbers. One hybrid meson candidate is the $\eta'_1$, which is predicted to decay to $K^\ast\bar{K}$ and have a mass near $2.3~\mathrm{GeV}$ (\citeauthor{qn_exotic_status}, \citeyear{qn_exotic_status}; \citeauthor{hybrid_mesons}, \citeyear{hybrid_mesons}). At this time, very few meson states have been identified in the $2.0~\mathrm{GeV}$ mass region. This dearth of evidence for existing states requires any tool developed to search for meson states above $2.0~\mathrm{GeV}$ must be verified by looking at known meson states. In order to search for the $\eta'_1$ hybrid meson candidate in $\gamma p \rightarrow pK^+K^-\gamma\gamma$ events, meson states decaying $K^\ast\bar{K}$ that contribute to the low mass region must be identified, defined in this document as particles having masses between $1400$ and $1600~\mathrm{MeV}$. Identifying what meson states exist in the low mass region is also critical to mapping the light meson spectrum and determining the quark-gluonic content of those meson states. The results of a partial wave analysis (PWA) of $\gamma p \rightarrow pX$ where $X\rightarrow K^\ast\bar{K}$ from $\gamma p \rightarrow pK^+K^-\gamma\gamma$ events in GlueX are presented. In the $J=0$ invariant mass distribution, the $\eta(1405)$ and $\eta(1475)$ are identified, adding to the debate as to whether two pseudoscalar mesons exist in the low mass region. For the $J=1$ distribution, the $f_1(1420)$ and $f_1(1510)$ axial vector mesons are seen, where the former helps further elaborate on the $E\iota$ puzzle of the twentieth century \citep{E_iota_puzzle}. With respect to the controversy of meson states in the low mass region, evidence for the existence of the $f_2(1430)$ meson is strengthened in the $J=2$ distribution, and the $f'_2(1525)$ state is seen. This work lays a foundation for the ASU Meson Physics Group to continue a wider search for hybrid mesons in the $\gamma p \rightarrow pK^+K^-\gamma\gamma$ reaction topology.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The current observable universe is made of matter due to baryon/antibaryon asymmetry. The Deep Underground Neutrino Experiment is an international experiment through the Fermi National Accelerator Laboratory that will study neutrinos. In this study, the detection efficiency for low energy…
The current observable universe is made of matter due to baryon/antibaryon asymmetry. The Deep Underground Neutrino Experiment is an international experiment through the Fermi National Accelerator Laboratory that will study neutrinos. In this study, the detection efficiency for low energy supernova neutrinos was examined in order to improve energy reconstruction for neutrino energies less than 40 MeV. To do this, supernova neutrino events were simulated using the LarSoft simulation package with and without background. The ratios between the true data and reconstructed data were compared to identify the deficiencies of the detector, which were found to be low energies and high drift times. The ratio between the true and reconstructed data was improved by applying the physical limits of the detector. The efficiency of the improved ratio of the clean data was found to be 93.2% and the efficiency of the improved ratio with the data with background was 82.6%. The study suggests that a second photon detector at the far wall of the detector would help improve the resolutions at high drift times and low neutrino energies.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which…
In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which will one day be able to be implemented efficiently on a quantum computer. For now we used classical computing to model one of the simplest nontrivial driven dissipative systems. This will serve as a verification of the master equation method and a baseline to test against when we are able to implement it on a quantum computer. For this report, we will mainly focus on classifying the DC component of the current around our ring. We notice several expected characteristics of this DC current including an inverse square tail at large values of the electric field and a linear response region at small values of the electric field.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the…
A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the spin of the target proton are useful tools to deconvolve the nucleon resonance spectrum. These observables are particularly sensitive to interference between phases of the complex amplitudes. A set of these observables has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab with linearly-polarized photons having energies from 725 to 1575 MeV with polar angle values of cos(theta) between -0.8 and 0.9 and transversely-polarized protons in the Jefferson Lab FRozen Spin Target (FROST). By fitting neutron yields from gamma p -> pi^+ n over azimuthal scattering angle, the observables \H and P have been extracted. These observables manifest as azimuthal modulations in the yields for the double-polarization experiment. Preliminary results for these observables will be presented and compared with predictions provided by the SAID Partial-Wave Analysis Facility.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio…
The OLYMPUS experiment measured the two-photon exchange contribution to elastic electron-proton scattering, over a range of four-momentum transfer from \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). The motivation for the experiment stemmed from measurements of the electric-to-magnetic form factor ratio of the proton \(\mu G_E/G_M\) extracted from polarization observables in polarized electron-proton scattering. Polarized electron-proton scattering experiments have revealed a significant decrease in \(\mu G_E/G_M\) at large \(Q^2\), in contrast to previous measurements from unpolarized electron-proton scattering. The commonly accepted hypothesis is that the discrepancy in the form factor ratio is due to neglected higher-order terms in the elastic electron-proton scattering cross section, in particular the two-photon exchange amplitude.
The goal of OLYMPUS was to measure the two-photon exchange contribution by measuring the positron-proton to electron-proton elastic scattering cross section ratio, \(\sigma_{e^+p}/\sigma_{e^-p}\). The two-photon exchange contribution is correlated to the deviation of the cross section ratio from unity.
In 2012, the OLYMPUS experiment collected over 4 fb\(^{-1}\) of \(e^+p\) and \(e^-p\) scattering data using electron and positron beams incident on a hydrogen gas target. The scattered leptons and protons were measured exclusively with a large acceptance spectrometer. OLYMPUS observed a slight rise in \(\sigma_{e^+p}/\sigma_{e^-p}\) of at most 1-2\% over a \(Q^2\) range of \(0.6 < Q^2 < 2.2\) \((\mathrm{GeV/c})^2\). This work discusses the motivations, experiment, analysis method, and the preliminary results for the cross section ratio as measured by OLYMPUS.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Exclusive neutral-pion electroproduction (ep → e'p'π0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBdϕπ and structure functions σT + εσL, σTT, and σLT as functions of t were obtained over…
Exclusive neutral-pion electroproduction (ep → e'p'π0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBdϕπ and structure functions σT + εσL, σTT, and σLT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γp → ϕp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive…
High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γp → ϕp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive coverage in the ϕ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the ϕ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (ϕ → K+K-) and neutral- (ϕ → K[0 over S]K[0 over L]) K[⎯⎯⎯ over K] decay modes of the ϕ. Further, for the charged mode, we differentiate between the cases where the final K- track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed ϕ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-modes, respectively. Possible effects from K+Λ* channels with pK[⎯⎯⎯ over K] final states are discussed. These present results constitute the most precise and extensive ϕ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)