Processes and Properties Refinement of Photovoltaic Hybrid Perovskites and Their Integration into Solar Cells

187729-Thumbnail Image.png
Description
Perovskite solar cells are one of the rising stars in the solar cell industry. This thesis explores several approaches to enhance the properties of the perovskite layer and the solar cell devices in which they operate. They include studies of

Perovskite solar cells are one of the rising stars in the solar cell industry. This thesis explores several approaches to enhance the properties of the perovskite layer and the solar cell devices in which they operate. They include studies of different antisolvent additives during spin coating of triple cation perovskites, the use of surfactants to improve the quality of perovskite film microstructures, the applicability of a new fabrication process, and the value of post-deposition thermal and chemical annealing processes.This thesis experimentally analyzes different antisolvents, viz., ethyl acetate, isopropyl alcohol, toluene, and chlorobenzene. It focuses on the antisolvent-assisted crystallization method to achieve homogenous nucleation of the perovskite film. Of all the antisolvents, ethyl acetate-treated films gave the best-performing device, achieving a power conversion efficiency of 15.5%. This thesis also analyzes the effects of mixed antisolvents on the qualities of triple-cation perovskites. Different solution concentrations of chlorobenzene in ethyl acetate and isopropyl alcohol in ethyl acetate are optimized for optimal supersaturation to achieve enlarged perovskite grains. Evaluations are discussed in the context of solution polarity and boiling point of the antisolvents, where 25% chlorobenzene in ethyl acetate antisolvent mixture shows the best film properties. Another study discusses a new fabrication process called electrical field-assisted direct ink deposition for large-scale printing of perovskite solar cells. This process involves the formation of nanodroplets under an electrical field deposited onto ITO/glass substrates. As a result, smooth Poly (3,4-ethylene dioxythiophene) polystyrene sulfonate layers are ii produced with an average effective electrical resistivity of 4.15104  0.26 -m compared to that of spin-coated films. A successive chapter discusses the studies of the electrical field-assisted direct ink deposition of the photoactive CH3NH3PbI2 (MAPbI3) layer. Its focus is on the post-deposition chemical annealing of the MAPbI3 films in methylamine gas, termed as methylamine gas-assisted healing and growth of perovskite films. This treatment improved the smoothness, reduced porosity, increased density, and generated more uniform grain sizes. Moreover, it improved the inter-grain boundary contacts by eliminating secondary, fine-grained boundary structures. Mechanisms behind the initial liquefaction of the MAPbI3 film's subsequent re-solidification are discussed.
Date Created
2023
Agent

Metal-Assisted Electrochemical Nanoimprinting: Delivering Resolution and Throughput via Engineered Stamps

171532-Thumbnail Image.png
Description
Recent advancements in the field of light wavefront engineering rely on complex 3D metasurfaces composed of sub-wavelength structures which, for the near infrared range, are challenging to manufacture using contemporary scalable micro- and nanomachining solutions. To address this demand, a

Recent advancements in the field of light wavefront engineering rely on complex 3D metasurfaces composed of sub-wavelength structures which, for the near infrared range, are challenging to manufacture using contemporary scalable micro- and nanomachining solutions. To address this demand, a novel parallel micromachining method, called metal-assisted electrochemical nanoimprinting (Mac-Imprint) was developed. Mac-Imprint relies on the catalysis of silicon wet etching by a gold-coated stamp enabled by mass-transport of the reactants to achieve high pattern transfer fidelity. This was realized by (i) using nanoporous catalysts to promote etching solution diffusion and (ii) semiconductor substrate pre-patterning with millimeter-scale pillars to provide etching solution storage. However, both of these approaches obstruct scaling of the process in terms of (i) surface roughness and resolution, and (ii) areal footprint of the fabricated structures. To address the first limitation, this dissertation explores fundamental mechanisms underlying the resolution limit of Mac-Imprint and correlates it to the Debye length (~0.9 nm). By synthesizing nanoporous catalytic stamps with pore size less than 10 nm, the sidewall roughness of Mac-Imprinted patterns is reduced to levels comparable to plasma-based micromachining. This improvement allows for the implementation of Mac-Imprint to fabricate Si rib waveguides with limited levels of light scattering on its sidewall. To address the second limitation, this dissertation focuses on the management of the etching solution storage by developing engineered stamps composed of highly porous polymers coated in gold. In a plate-to-plate configuration, such stamps allow for the uniform patterning of chip-scale Si substrates with hierarchical 3D antireflective and antifouling patterns. The development of a Mac-Imprint system capable of conformal patterning onto non-flat substrates becomes possible due to the flexible and stretchable nature of gold-coated porous polymer stamps. Understanding of their mechanical behavior during conformal contact allows for the first implementation of Mac-Imprint to directly micromachine 3D hierarchical patterns onto plano-convex Si lenses, paving the way towards scalable fabrication of multifunctional 3D metasurfaces for applications in advanced optics.
Date Created
2022
Agent

Microwave-assisted Sol-gel Synthesis of the MAX Phases Cr2GaC, Cr2GeC, and V2GeC

Description

MAX phases are ternary carbides or nitrides that possess unique material characteristics, often simplified as a mix of metallic and ceramic properties. Many aspects of MAX phases are still being researched, but they have exciting potential applications in high-temperature structural

MAX phases are ternary carbides or nitrides that possess unique material characteristics, often simplified as a mix of metallic and ceramic properties. Many aspects of MAX phases are still being researched, but they have exciting potential applications in high-temperature structural systems, the next generation of nuclear power plants, and concentrated solar power. This project aims to benefit further research into these applications by validating a rapid unconventional synthesis method: microwave-assisted sol-gel synthesis. Three MAX phases (Cr2GaC, Cr2GeC, and V2GeC) were successfully synthesized via this route, which should open the door for more rapid prototyping and ultimately more efficient research.

Date Created
2021-05
Agent

Atomic-level analysis of oxygen exchange reactions on ceria-based catalysts

157552-Thumbnail Image.png
Description
Non-stoichiometric oxides play a critical role in many catalytic, energy, and sensing technologies, providing the ability to reversibly exchange oxygen with the ambient environment through the creation and annihilation of surface oxygen vacancies. Oxygen exchange at the surfaces of these

Non-stoichiometric oxides play a critical role in many catalytic, energy, and sensing technologies, providing the ability to reversibly exchange oxygen with the ambient environment through the creation and annihilation of surface oxygen vacancies. Oxygen exchange at the surfaces of these materials is strongly influenced by atomic structure, which varies significantly across nanoparticle surfaces. The studies presented herein elucidate the relationship between surface structure behaviors and oxygen exchange reactions on ceria (CeO2) catalyst materials. In situ aberration-corrected transmission electron microscopy (AC-TEM) techniques were developed and employed to correlate dynamic atomic-level structural heterogeneities to local oxygen vacancy activity.

A model Ni/CeO2 catalyst was used to probe the role of a ceria support during hydrocarbon reforming reactions, and it was revealed that carbon formation was inhibited on Ni metal nanoparticles due to the removal of lattice oxygen from the ceria support and subsequent oxidation of adsorbed decomposed hydrocarbon products. Atomic resolution observations of surface oxygen vacancy creation and annihilation were performed on CeO2 nanoparticle surfaces using a novel time-resolved in situ AC-TEM approach. Cation displacements were found to be related to oxygen vacancy creation and annihilation, and the most reactive surface oxygen sites were identified by monitoring the frequency of cation displacements. In addition, the dynamic evolution of CeO2 surface structures was characterized with high temporal resolution AC-TEM imaging, which resulted in atomic column positions and occupancies to be determined with a combination of spatial precision and temporal resolution that had not previously been achieved. As a result, local lattice expansions and contractions were observed on ceria surfaces, which were likely related to cyclic oxygen vacancy activity. Finally, local strain fields on CeO2 surfaces were quantified, and it was determined that local strain enhanced the ability of a surface site to create oxygen vacancies. Through the characterization of dynamic surface structures with advanced AC-TEM techniques, an improvement in the fundamental understanding of how ceria surfaces influence and control oxygen exchange reactions was obtained.
Date Created
2019
Agent

Growth and characterization of InGaAsP alloy nanowires with widely tunable bandgaps for optoelectronic applications

156440-Thumbnail Image.png
Description
The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be

The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) offers much more flexibility for achieving a wide range of compositions and bandgaps via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, etc., given the existing rich knowledge in device fabrication based on these materials.

This dissertation explores the growth of InGaAsP alloys using a low-cost method that could be potentially important especially for III-V NW-based solar cells. The NWs were grown by Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms using a Low-Pressure Chemical Vapor Deposition (LPCVD) technique. The concept of supersaturation was employed to control the morphology of NWs through the interplay between VLS and VS growth mechanisms. Comprehensive optical and material characterizations were carried out to evaluate the quality of the grown materials.

The growth of exceptionally high quality III-V phosphide NWs of InP and GaP was studied with an emphasis on the effects of vastly different sublimation rates of the associated III and V elements. The incorporation of defects exerted by deviation from stoichiometry was examined for GaP NWs, with an aim towards maximization of bandedge-to-defect emission ratio. In addition, a VLS-VS assisted growth of highly stoichiometric InP thin films and nano-networks with a wide temperature window from 560◦C to 720◦C was demonstrated. Such growth is shown to be insensitive to the type of substrates such as silicon, InP, and fused quartz. The dual gradient method was exploited to grow composition-graded ternary alloy NWs of InGaP, InGaAs, and GaAsP with different bandgaps ranging from 0.6 eV to 2.2 eV, to be used for making laterally-arrayed multiple bandgap (LAMB) solar cells. Furthermore, a template-based growth of the NWs was attempted based on the Si/SiO2 substrate. Such platform can be used to grow a wide range of alloy nanopillar materials, without being limited by typical lattice mismatch, providing a low cost universal platform for future PV solar cells.
Date Created
2018
Agent

Microstructure development in magnetite films via non-classical crystallization

156128-Thumbnail Image.png
Description
Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution

Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of reactant chemistry and reactor conditions (rotation rate, flow rates etc.). A key feature of this method was the ability to constantly supply fresh solutions throughout deposition. Solution flow due to substrate rotation ensured that reactant depleted solutions were spun off. This imparted a limited volume, near two-dimensional restriction on the growth process. Film microstructure was studied as a function of process parameters such as liquid flow rate, nebulizer configuration, platen rotation rate and solution chemistry. It was found that operating in the micro-droplet regime of deposition was a crucial factor in controlling the microstructure.

Film porosity and substrate adhesion were linked to the deposition rate, which in-turn depended on solution chemistry. Films exhibited a wide variety of hierarchically organized microstructures often spanning length scales from tens-of-nanometers to a few microns. These included anisotropic morphologies such as nanoplates and nanoblades, that were generally unexpected from magnetite (a high symmetry cubic solid). Time resolved studies showed that the reason for complex hierarchy in microstructure was the crystallization via non-classical pathways. SSD of magnetite films involved formation of precursor phases that subsequently underwent solid-state transformations and nanoparticle self-assembly. These precursor phases were identified and possible reaction mechanisms for the formation of magnetite were proposed. A qualitative description of the driving forces for self-assembly was presented.
Date Created
2018
Agent

Microstructure Development in Direct Metal Laser Sintered Inconel Alloy 718

155242-Thumbnail Image.png
Description
The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large

The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new dimension of complexity has emerged in the understanding of alloy microstructure development, hence, potential alloy development opportunity for IN718.

This study is a broad stroke at discovering possible alternate microstructures developing in Direct-Metal-Laser-Sintering (DMLS) processed IN718 compared to those in conventional wrought IN718. The main inspiration for this study came from creep test results from several DMLS IN718 samples at Honeywell that showed a significant

improvement in creep capabilities for DMLS718 compared to cast and wrought IN718 (Honeywell).

From this data the steady-state creep rates were evaluated and fitted to current creep models in order to identify active creep mechanisms in conventional and DMLS IN718 and illuminate the potential factors responsible for the improved creep behavior in DMSL processed IN718.

Because rapid heating and cooling can introduce high internal stress and impact microstructural development, such as gamma double prime formations (Oblak et al.), leading to differences in material behavior, DMLS and conventional IN718 materials are studied using SEM and TEM characterization to investigate sub-micron and/or nano-scale

microstructural differences developed in the DMLS samples as a result of their complex thermal history and internal stress.

The preliminary analysis presented in this body of work is an attempt to better understand the effect of DMLS processing in quest for development of optimization techniques for DMLS as a whole. A historical sketch of nickel alloys and the development of IN718 is given. A literature review detailing the microstructure of IN718 is presented. Creep data analysis and identification of active creep mechanisms are evaluated. High-resolution microstructural characterization of DMLS and wrought IN718 are discussed in detail throughout various chapters of this thesis. Finally, an initial effort in developing a processing model that would allow for parameter optimization is presented.
Date Created
2017
Agent

Nanoporous transparent conducting oxides and new solid acid catalysts

155090-Thumbnail Image.png
Description
New sol-gel routes were developed to fabricate transparent conducting oxide coatings for energy applications. Sol-gel synthesis was chosen because the metal oxide products have high surface area and porosity. Titanium sol-gel chemistry was the main focus of the

New sol-gel routes were developed to fabricate transparent conducting oxide coatings for energy applications. Sol-gel synthesis was chosen because the metal oxide products have high surface area and porosity. Titanium sol-gel chemistry was the main focus of the studies, and the synthesis of macroporous antimony-doped tin oxide was also explored. The surface chemistry and band characteristics of anatase TiO2 show promise for solar energy purposes as photoelectrodes in DSSCs and as photocatalysts to degrade organic dyes and to split water. Modifying the band structure by increasing the conduction band edge energy is specifically of interest for reducing protons in water. To this end, a new sol-gel method was developed for incorporating Zr-dopant in nanoporous anatase TiO2. The products follow Vegard’s law up to 20 atom%, exhibiting surface area of 79 m2/g and pore volume of 0.20 cm3/g with average pore diameter of 10.3 nm; the conduction band edge energy increased by 0.22 eV and the band gap increased by 0.1 eV.

In pursuit of a greener sol-gel route for TiO2 materials, a solution of TiOSO4 in water was explored. Success in obtaining a gel came by utilizing hydrogen peroxide as a ligand that suppressed precipitation reactions. Through modifying this sol-gel chemistry to obtain a solid acid, the new material hydrogen titanium phosphate sulfate, H1-xTi2(PO4)3-x(SO4)x, (0 < x < 0.5) was synthesized and characterized for the first time. From the reported synthetic route, this compound took the form of macroscopic agglomerates of nanoporous aggregates of nanoparticles around 20 nm and the product calcined at 600 °C exhibited surface area of 78 m2/g, pore volume of 0.22 cm3/g and an average pore width of 11 nm. This solid acid exhibits complete selectivity for the non-oxidative dehydrogenation of methanol to formaldehyde and hydrogen gas, with >50% conversion at 300 °C.

Finally, hierarchically meso-macroporous antimony doped tin oxide was synthesized with regular macropore size around 210 nm, determined by statistical dye trajectory tracking, and also with larger pores up to micrometers in size. The structure consisted of nanoparticles around 4 nm in size, with textural mesopores around 20 nm in diameter.
Date Created
2016
Agent

Interfacial and electrode modifications in P₃HT:PC₆₁BM based organic solar cells: devices, processing and characterization

153887-Thumbnail Image.png
Description
The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on

The inexorable upsurge in world’s energy demand has steered the search for newer renewable energy sources and photovoltaics seemed to be one of the best alternatives for energy production. Among the various photovoltaic technologies that emerged, organic/polymer photovoltaics based on solution processed bulk-heterojunctions (BHJ) of semiconducting polymers has gained serious attention owing to the use of inexpensive light-weight materials, exhibiting high mechanical flexibility and compatibility with low temperature roll-to-roll manufacturing techniques on flexible substrates. The most widely studied material to date is the blend of regioregular P3HT and PC61BM used as donor and acceptor materials. The object of this study was to investigate and improve the performance/stability of the organic solar cells by use of inexpensive materials. In an attempt to enhance the efficiency of organic solar cells, we have demonstrated the use of hexamethyldisilazane (HMDS) modified indium tin oxide (ITO) electrode in bulk heterojunction solar cell structure The device studies showed a significant enhancement in the short-circuit current as well as in the shunt resistance on use of the hexamethyldisilazane (HMDS) layer. In another approach a p-type CuI hole-transport layer was utilized that could possibly replace the acidic PEDOT:PSS layer in the fabrication of high-efficiency solar cells. The device optimization was done by varying the concentration of CuI in the precursor solution which played an important role in the efficiency of the solar cell devices. Recently a substantial amount of research has been focused on identifying suitable interfacial layers in organic solar cells which has efficient charge transport properties. It was illustrated that a thin layer of silver oxide interfacial layer showed a 28% increase in power conversion efficiency in comparison to that of the control cell. The optoelectronic properties and morphological features of indium-free ZnO/Ag/MoOx electrodes was also studied. Organic solar cells on these composite electrodes revealed good optical and electrical properties, making them a promising alternative indium free and PEDOT:PSS-free organic solar cells. Lastly, inverted solar cells utilizing zinc oxide and yttrium doped zinc oxide electron transport was also created and their device properties revealed that optimum annealing conditions and yttrium doping was essential to obtain high efficiency solar cells.
Date Created
2015
Agent

Novel transparent composite electrodes and mixed oxide layers for improved flexible electronics

153369-Thumbnail Image.png
Description
Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role as transparent electrodes for optoelectronic devices such as solar cell

Transparent conductive oxides (TCO) comprise a class of materials that exhibit unique combination of high transparency in the visible region along with high electrical conductivity. TCOs play an important role as transparent electrodes for optoelectronic devices such as solar cell panels, liquid crystal displays, transparent heat mirrors and organic light emitting devices (OLED). The most commonly used transparent electrodes in optoelectronic applications is indium tin oxide (ITO) due to its low resistivity (~ 10−4 Ω-cm) and high transmittance (~ 80 %). However, the limited supply of indium and the growing demand for ITO make the resulting fabrication costs prohibitive for future industry. Thus, cost factors have promoted the search for inexpensive materials with good electric-optical properties.

The object of this work is to study the structure-property-processing relationship and optimize a suitable transparent electrode with the intent to optimize them for flexible optoelectronics applications. The work focuses on improved processing of the mixed oxide (indium gallium zinc oxide, IGZO) thin films for superior optical and electrical properties. The study focuses on two different methods of post-deposition annealing-microwave and conventional. The microwave annealing was seen to have the dual advantage of reduced time and lower temperature, as compared to conventional annealing. Another work focuses on an indium free transparent composite electrode (TCE) where a very thin metal layer is inserted between the two TCO layers. A novel Nb2O5/Ag/Nb2O5 multilayered structure can exhibit better electrical and optical properties than a single layered TCO thin film. The focus for low cost alternative leads to a TiO2/metal/TiO2 based TCE. A systematic study was done to understand the effect of metal thickness and substituting different metals (Ag, Cu or Au) on the opto-electrical properties of the TCEs. The TiO2/Ag/TiO2 with mid Ag thickness 9.5 nm has been optimized to have a sheet resistance of 5.7 Ohm/sq. average optical transmittance of 90 % at 550 nm and figure of merit with 61.4 ×10-3 Ω-1. The TCEs showed improved optical and electrical properties when annealed in forming gas and vacuum. These dielectric/metal/dielectric multilayer TCEs have lower total thickness and are more efficient than a single-layer ITO film.
Date Created
2015
Agent