Mathematics of Transmission Dynamics and Control of HIV in an MSM Population

189255-Thumbnail Image.png
Description
\begin{abstract}The human immunodeficiency virus (HIV) pandemic, which causes the syndrome of opportunistic infections that characterize the late stage HIV disease, known as the acquired immunodeficiency syndrome (AIDS), remains a major public health challenge to many parts of the world. This

\begin{abstract}The human immunodeficiency virus (HIV) pandemic, which causes the syndrome of opportunistic infections that characterize the late stage HIV disease, known as the acquired immunodeficiency syndrome (AIDS), remains a major public health challenge to many parts of the world. This dissertation contributes in providing deeper qualitative insights into the transmission dynamics and control of the HIV/AIDS disease in Men who have Sex with Men (MSM) community. A new mathematical model (which is relatively basic), which incorporates some of the pertinent aspects of HIV epidemiology and immunology and fitted using the yearly new case data of the MSM population from the State of Arizona, was designed and used to assess the population-level impact of awareness of HIV infection status and condom-based intervention, on the transmission dynamics and control of HIV/AIDS in an MSM community. Conditions for the existence and asymptotic stability of the various equilibria ofthe model were derived. The numerical simulations showed that the prospects for the effective control and/or elimination of HIV/AIDS in the MSM community in the United States are very promising using a condom-based intervention, provided the condom efficacy is high and the compliance is moderate enough. The model was extended in Chapter 3 to account for the effect of risk-structure, staged-progression property of HIV disease, and the use of pre-exposure prophylaxis (PrEP) on the spread and control of the disease. The model was shown to undergo a PrEP-induced \textit{backward bifurcation} when the associated control reproduction number is less than one. It was shown that when the compliance in PrEP usage is $50%(80%)$ then about $19.1%(34.2%)$ of the yearly new HIV/AIDS cases recorded at the peak will have been prevented, in comparison to the worst-case scenario where PrEP-based intervention is not implemented in the MSM community. It was also shown that the HIV pandemic elimination is possible from the MSM community even for the scenario when the effective contact rate is increased by 5-fold from its baseline value, if low-risk individuals take at least 15 years before they change their risky behavior and transition to the high-risk group (regardless of the value of the transition rate from high-risk to low-risk susceptible population).
Date Created
2023
Agent

Mathematics of climate change and mosquito-borne disease dynamics

156612-Thumbnail Image.png
Description
The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause.

Motivated by the fact that understanding the dynamics of disease vector is crucial to understanding the transmission and control of the VBDs they cause, a novel weather-driven deterministic model for the population biology of the mosquito is formulated and rigorously analyzed. Numerical simulations, using relevant weather and entomological data for Anopheles mosquito (the vector for malaria), show that maximum mosquito abundance occurs when temperature and rainfall values lie in the range [20-25]C and [105-115] mm, respectively.

The Anopheles mosquito ecology model is extended to incorporate human dynamics. The resulting weather-driven malaria transmission model, which includes many of the key aspects of malaria (such as disease transmission by asymptomatically-infectious humans, and enhanced malaria immunity due to repeated exposure), was rigorously analyzed. The model which also incorporates the effect of diurnal temperature range (DTR) on malaria transmission dynamics shows that increasing DTR shifts the peak temperature value for malaria transmission from 29C (when DTR is 0C) to about 25C (when DTR is 15C).

Finally, the malaria model is adapted and used to study the transmission dynamics of chikungunya, dengue and Zika, three diseases co-circulating in the Americas caused by the same vector (Aedes aegypti). The resulting model, which is fitted using data from Mexico, is used to assess a few hypotheses (such as those associated with the possible impact the newly-released dengue vaccine will have on Zika) and the impact of variability in climate variables on the dynamics of the three diseases. Suitable temperature and rainfall ranges for the maximum transmission intensity of the three diseases are obtained.
Date Created
2018
Agent

Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy

155984-Thumbnail Image.png
Description
Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals to give estimate forecasts using data assimilation via an ensemble Kalman Filter. Using the ensemble Kalman Filter, I perform dual estimation of parameters and state variables to test the prediction accuracy of the models. Finally, I present a novel model with time delay and a delay-dependent parameter. I provide a geometric stability result to study the behavior of this model and show that the inclusion of time delay may improve the accuracy of predictions. Also, I demonstrate with clinical data that the inclusion of the delay-dependent parameter facilitates the identification and estimation of parameters.
Date Created
2017
Agent

Microglia Motility in the Context of a PDGF Induced Glioblastoma

137359-Thumbnail Image.png
Description
Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma. In an effort to investigate properties of TAMS in the

Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma. In an effort to investigate properties of TAMS in the context of glioblastoma, I utilized data from a PDGF-driven rat model of glioma that highly resembles human glioblastoma. Data was collected from time-lapse microscopy of slice cultures that differentially labels glioma cells and also microglia cells within and outside the tumor microenvironment. Here I show that microglia localize in the tumor and move with greater speed and migration than microglia outside the tumor environment. Following previous studies that show microglia can be characterized by certain movement distributions based on environmental influences, in this study, the majority of microglia movement was characterized by a power law distribution with a characteristic power law exponent lower than outside the tumor region. This indicates that microglia travel at greater distances within the tumor region than outside of it.
Date Created
2013-12
Agent

Evolution of Proliferation and the Angiogenic Switch in Tumors with High Clonal Diversity

128883-Thumbnail Image.png
Description

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.

Date Created
2014-04-14
Agent

Dynamics and implications of data-based disease models in public health and agriculture

155172-Thumbnail Image.png
Description
The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the

The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and quantifying the disease burden from the early epidemic phase.

Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis.

In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic.

In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation.

In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism.

Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size.

The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics.
Date Created
2016
Agent

Oncolytic viral and immunotherapy models combined with strategies to ameliorate cancer burden

154707-Thumbnail Image.png
Description
Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination

Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination of oncolytic virotherapy and immunotherapy is explored through deterministic systems of nonlinear differential equations, constructed to match experimental data for murine melanoma. Mathematical analysis was done in order to gain insight on the relationship between cancer, viruses and immune response. One extension of the model focuses on clinical needs, with the underlying goal to seek optimal treatment regimens; for both frequency and dose quantity. The models in this work were first used to estimate parameters from preclinical experimental data, to identify biologically realistic parameter values. Insight gained from the mathematical analysis in the first model, allowed for numerical analysis to explore optimal treatment regimens of combination oncolytic virotherapy and dendritic vaccinations. Permutations accounting for treatment scheduled were done to find regimens that reduce tumor size. Observations from the produced data lead to in silico exploration of immune-viral interactions. Results suggest under optimal settings, combination treatment works better than monotherapy of either type. The most optimal result suggests treatment over a longer period of time, with fractioned doses, while reducing the total dendritic vaccination quantity, and maintaining the maximum virotherapy used in the experimental work.
Date Created
2016
Agent

Applications of the Droop cell quota model to data based cancer growth and treatment models

153468-Thumbnail Image.png
Description
The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate Monochrysis lutheri and concluded that its specific growth rate depended on the concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12. The

The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate Monochrysis lutheri and concluded that its specific growth rate depended on the concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12. The Droop model provides a mathematical expression to link growth rate to the intracellular concentration of a limiting nutrient. Although the Droop model has been an important modeling tool in ecology, it has only recently been applied to study cancer biology. Cancer cells live in an ecological setting, interacting and competing with normal and other cancerous cells for nutrients and space, and evolving and adapting to their environment. Here, the Droop equation is used to model three cancers.

First, prostate cancer is modeled, where androgen is considered the limiting nutrient since most tumors depend on androgen for proliferation and survival. The model's accuracy for predicting the biomarker for patients on intermittent androgen deprivation therapy is tested by comparing the simulation results to clinical data as well as to an existing simpler model. The results suggest that a simpler model may be more beneficial for a predictive use, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting.

Next, two chronic myeloid leukemia models are compared that consider Imatinib treatment, a drug that inhibits the constitutively active tyrosine kinase BCR-ABL. Both models describe the competition of leukemic and normal cells, however the first model also describes intracellular dynamics by considering BCR-ABL as the limiting nutrient. Using clinical data, the differences in estimated parameters between the models and the capacity for each model to predict drug resistance are analyzed.

Last, a simple model is presented that considers ovarian tumor growth and tumor induced angiogenesis, subject to on and off anti-angiogenesis treatment. In this environment, the cell quota represents the intracellular concentration of necessary nutrients provided through blood supply. Mathematical analysis of the model is presented and model simulation results are compared to pre-clinical data. This simple model is able to fit both on- and off-treatment data using the same biologically relevant parameters.
Date Created
2015
Agent

Three Level Signal Transduction Cascades Lead to Reliably Timed Switches

129446-Thumbnail Image.png
Description

Signaling cascades proliferate signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three

Signaling cascades proliferate signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. Cascading these equations we demonstrate that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting the evolutionary benefit of the observed cascades.

Date Created
2014-11-21
Agent

Modeling the Population Dynamics of Lemon Sharks

129482-Thumbnail Image.png
Description

Background: Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds) are inherently vulnerable to anthropogenic mortality. Although some mathematical models have been applied successfully to manage these animals, more detailed treatments are often needed to assess potential drivers of population dynamics.

Background: Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds) are inherently vulnerable to anthropogenic mortality. Although some mathematical models have been applied successfully to manage these animals, more detailed treatments are often needed to assess potential drivers of population dynamics. In particular, factors such as age-structure, density-dependent feedbacks on reproduction, and demographic stochasticity are important for understanding population trends, but are often difficult to assess. Lemon sharks (Negaprion brevirostris) have a pelagic adult phase that makes them logistically difficult to study. However, juveniles use coastal nursery areas where their densities can be high.

Results: We use a stage-structured, Markov-chain stochastic model to describe lemon shark population dynamics from a 17-year longitudinal dataset at a coastal nursery area at Bimini, Bahamas. We found that the interaction between delayed breeding, density-dependence, and demographic stochasticity accounts for 33 to 49% of the variance in population size.

Conclusions: Demographic stochasticity contributed all random effects in this model, suggesting that the existence of unmodeled environmental factors may be driving the majority of interannual population fluctuations. In addition, we are able to use our model to estimate the natural mortality rate of older age classes of lemon sharks that are difficult to study. Further, we use our model to examine what effect the length of a time series plays on deciphering ecological patterns. We find that—even with a relatively long time series—our sampling still misses important rare events. Our approach can be used more broadly to infer population dynamics of other large vertebrates in which age structure and demographic stochasticity are important.

Date Created
2014-11-18
Agent