Description
Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination of oncolytic virotherapy and immunotherapy is explored through deterministic systems of nonlinear differential equations, constructed to match experimental data for murine melanoma. Mathematical analysis was done in order to gain insight on the relationship between cancer, viruses and immune response. One extension of the model focuses on clinical needs, with the underlying goal to seek optimal treatment regimens; for both frequency and dose quantity. The models in this work were first used to estimate parameters from preclinical experimental data, to identify biologically realistic parameter values. Insight gained from the mathematical analysis in the first model, allowed for numerical analysis to explore optimal treatment regimens of combination oncolytic virotherapy and dendritic vaccinations. Permutations accounting for treatment scheduled were done to find regimens that reduce tumor size. Observations from the produced data lead to in silico exploration of immune-viral interactions. Results suggest under optimal settings, combination treatment works better than monotherapy of either type. The most optimal result suggests treatment over a longer period of time, with fractioned doses, while reducing the total dendritic vaccination quantity, and maintaining the maximum virotherapy used in the experimental work.
Download count: 1
Details
Title
- Oncolytic viral and immunotherapy models combined with strategies to ameliorate cancer burden
Contributors
- Summer, Ilyssa Aimee (Author)
- Castillo-Chavez, Carlos (Thesis advisor)
- Nagy, John (Thesis advisor)
- Mubayi, Anuj (Committee member)
- Kang, Yun (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2016
- bibliographyIncludes bibliographical references (pages 91-98)
- Field of study: Applied mathematics for the life and social sciences
Citation and reuse
Statement of Responsibility
by Ilyssa Aimee Summer