EMT and Tumor Metastasis

128383-Thumbnail Image.png
Description

EMT and MET comprise the processes by which cells transit between epithelial and mesenchymal states, and they play integral roles in both normal development and cancer metastasis. This article reviews these processes and the molecular pathways that contribute to them.

EMT and MET comprise the processes by which cells transit between epithelial and mesenchymal states, and they play integral roles in both normal development and cancer metastasis. This article reviews these processes and the molecular pathways that contribute to them. First, we compare embryogenesis and development with cancer metastasis. We then discuss the signaling pathways and the differential expression and down-regulation of receptors in both tumor cells and stromal cells, which play a role in EMT and metastasis. We further delve into the clinical implications of EMT and MET in several types of tumors, and lastly, we discuss the role of epigenetic events that regulate EMT/MET processes. We hypothesize that reversible epigenetic events regulate both EMT and MET, and thus, also regulate the development of different types of metastatic cancers.

Date Created
2015-02-26
Agent

Drug Resistance in Cancer: An Overview

128713-Thumbnail Image.png
Description

Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such

Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies. Lastly, this review concludes with a discussion on the best treatment options for existing drug resistant cancers, ways to prevent the formation of drug resistant cancers and cancer progenitor cells, and future directions of study.

Date Created
2014-09-05
Agent