Building-integrated carbon-capture (BICC) is an envisioned mechanism capable of absorbing carbon dioxide (CO2) from the air to be stored and then converted into useful carbon-based materials without negatively impacting the environment. This dissertation builds on the authors' previous work, in…
Building-integrated carbon-capture (BICC) is an envisioned mechanism capable of absorbing carbon dioxide (CO2) from the air to be stored and then converted into useful carbon-based materials without negatively impacting the environment. This dissertation builds on the authors' previous work, in which building façades were treated as artificial leaves capable of providing shade to lower solar heat gain, while simultaneously capturing CO2 through the air filters attached to the building façades by attempting a different approach capable of capturing CO2 within buildings. This dissertation presents the author’s work on BICC, where buildings are envisioned as CO2 reservoirs or vacuums, into which mechanical systems introduce fresh air, and through human activities, the air within the building becomes enriched with CO2 before being pushed out back to the outer environment. The design of a carbon-capture mechanism will take advantage of the ventilation side of existing HVAC systems, through which BICC captures CO2 from the exhaust-enriched CO2 air. BICC will utilize existing opportunities and components within buildings represented in the high CO2 concentration in buildings, ventilation guidelines, mechanical equipment represented in air handling unit and air duct network, in addition to natural gas grid connectivity. BICC will capture CO2 through buildings' mechanical system, and the captured CO2 would then be converted into renewable methane to be injected into the existing natural gas pipeline network. This dissertation will investigate the potential of BICC to offset carbon emissions from multiple commercial building types and will present a utilization strategy for the captured carbon.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange…
In this study, the stereolithography (SLA) 3D printing method is used to manufacture honeycomb-shaped flat sorbents that can capture CO2 from the air. The 3D-printed sorbents were synthesized using polyvinyl alcohol (PVA), propylene glycol, photopolymer resin, and an ion exchange resin (IER). The one-factor-at-a-time (OFAT) design-of-experiment approach was employed to determine the best combination ratio of materials to achieve high moisture swing and a good turnout of printed sorbents. The maximum load limit of the liquid photopolymer resin to enable printability of sorbents was found to be 44%. A series of moisture swing experiments was conducted to investigate the adsorption and desorption performance of the 3D-printed sorbents and compare them with the performance of IER samples prepared by a conventional approach. Results from these experiments conducted indicate that the printed sorbents showed less CO2 adsorptive characteristics compared to the conventional IER sample. It is proposed for future research that a liquid photopolymer resin made up of an IER be synthesized in order to improve the CO2-capturing ability of manufactured sorbents.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the…
Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the dominant source of some local air pollution problems. In general, mobile sources are divided into two categories: on-road mobile sources and non-road mobile sources. In Maricopa County, the Maricopa County Air Quality Department prepares inventories of all local sources [11], [12]. These inventories report that for Maricopa County, on-road mobile sources emit about 23% of total PM2.5 annually, 58% of the total NOx, and 8% of the total VOCs. To understand how future changes how vehicles might impact local air quality, this work focuses on comparing current inventories of PM2.5, black carbon (BC), NOx, and VOCs to what may be expected emissions in future years based on different scenarios of penetration of hybrid gas-electric vehicles (HEV) and electric vehicles (EV) as well as continued reduction in emissions from conventional internal combustion (IC) vehicles. A range of scenarios has been developed as part of this thesis based on literature reports [6], [8], air quality improvement plan documentation [5], projected vehicle sales and registration [3], [4], as well as using EPA’s Motor Vehicle Emission Simulator (MOVES) [9]. Thus, these created scenarios can be used to evaluate what factors will make the most significant difference in improving local air quality through reduced emissions of PM2.5, BC, NOx and VOCs in the future. Specifically, the impact of a greater fraction of cleaner alternative vehicles such as hybrid-electric and electric vehicles will be compared to the impact of continual reductions in emissions from traditional internal combustion vehicles to reducing urban air pollution emissions in Maricopa County.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Iodide (I-) in surface and groundwaters is a potential precursor for the formation of iodinated disinfection by-products (I-DBPs) during drinking water treatment. The aim of this thesis is to provide a perspective on the sources and occurrence of I- in…
Iodide (I-) in surface and groundwaters is a potential precursor for the formation of iodinated disinfection by-products (I-DBPs) during drinking water treatment. The aim of this thesis is to provide a perspective on the sources and occurrence of I- in United States (US) source waters based on ~9200 surface water (SW) and groundwater (GW) sampling locations. The median I- concentrations observed was 16 μg/l and 14 μg/l, respectively in SW and GW. However, these samples were rarely collected at water treatment plant (WTP) intakes, where such iodide occurrence data is needed to understand impacts on DBPs. Most samples were collected in association with geochemical studies. We conclude that I- occurrence appears to be influenced by geological features, including halite rock/river basin formations, saline aquifers and organic rich shale/oil formations. Halide ratios (Cl-/I-, Br-/I- and Cl-/Br-) were analyzed to determine the I- origin in source waters. SW and GW had median Cl-/I- ratios of ~3600 μg/μg and median Br-/I- ratios of ~15 μg/μg. For states with I- concentration >50 μg/l (e.g., Montana and North Dakota), a single source (i.e., organic rich formations) can be identified. However, for states like California and Texas that have wide-ranging I- concentration of below detection limit to >250 μg/l, I- occurrence can be attributed to a mixture of marine and organic signatures. The lack of information of organic iodine, inorganic I- and IO3- in source waters limits our ability to predict I-DBPs formed during drinking water treatment, and new occurrence studies are needed to fill these data gaps. This is first of its kind study to understand the I- occurrence through historical data, however we also identify the shortcomings of existing databases used to carry out this study.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams.…
An urgent need for developing new chemical separations that address the capture of dilute impurities from fluid streams are needed. These separations include the capture of carbon dioxide from the atmosphere, impurities from drinking water, and toxins from blood streams. A challenge is presented when capturing these impurities because the energy cost for processing the bulk fluid stream to capture trace contaminants is too great using traditional thermal separations. The development of sorbents that may capture these contaminants passively has been emphasized in academic research for some time, producing many designer materials including metal-organic frameworks (MOFs) and polymeric resins. Scaffolds must be developed to effectively anchor these materials in a passing fluid stream. In this work, two design techniques are presented for anchoring these sorbents in electrospun fiber scaffolds.
The first technique involves imbedding sorbent particles inside the fibers: forming particle-embedded fibers. It is demonstrated that particles will spontaneously coat themselves in the fibers at dilute loadings, but at higher loadings some get trapped on the fiber surface. A mathematical model is used to show that when these particles are embedded, the polymeric coating provided by the fibers may be designed to increase the kinetic selectivity and/or stability of the embedded sorbents. Two proof-of-concept studies are performed to validate this model including the increased selectivity of carbon dioxide over nitrogen when the MOF ZIF-8 is embedded in a poly(ethylene oxide) and Matrimid polymer blend; and that increased hydrothermal stability is realized when the water-sensitive MOF HKUST-1 is embedded in polystyrene fibers relative to pure HKUST-1 powder.
The second technique involves the creation of a pore network throughout the fiber to increase accessibility of embedded sorbent particles. It is demonstrated that the removal of a blended highly soluble polymer additive from the spun particle-containing fibers leaves a pore network behind without removing the embedded sorbent. The increased accessibility of embedded sorbents is validated by embedding a known direct air capture sorbent in porous electrospun fibers, and demonstrating that they have the fastest kinetic uptake of any direct air capture sorbent reported in literature to date, along with over 90% sorbent accessibility.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding…
This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H[subscript 2]O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for…
This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a carbon dioxide feeding device was designed, built, and tested. The results indicate how much resin should be used with a given volume of algae medium: approximately 500 grams of resin can feed 1% CO2 at about three liters per minute to a ten liter medium of the Galdieria sulphuraria 5587.1 strain for one hour (equivalent to about 0.1 grams of carbon dioxide per hour per seven grams of algae). Using the resin device, the algae grew within their normal growth range: 0.096 grams of ash-free dry weight per liter over a six hour period. Future applications in which the resin-to-algae process can be utilized are discussed.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Meeting time-varying peak demand poses a key challenge to the U.S. electricity system. Building-based electricity storage – to enable demand response (DR) without curtailing actual appliance usage – offers potential benefits of lower electricity production cost, higher grid reliability, and…
Meeting time-varying peak demand poses a key challenge to the U.S. electricity system. Building-based electricity storage – to enable demand response (DR) without curtailing actual appliance usage – offers potential benefits of lower electricity production cost, higher grid reliability, and more flexibility to integrate renewables. DR tariffs are currently available in the U.S. but building-based storage is still underutilized due to insufficiently understood cost-effectiveness and dispatch strategies. Whether DR schemes can yield a profit for building operators (i.e., reduction in electricity bill that exceeds levelized storage cost) and which particular storage technology yields the highest profit is yet to be answered. This study aims to evaluate the economics of providing peak shaving DR under a realistic tariff (Con Edison, New York), using a range of storage technologies (conventional and advanced batteries, flywheel, magnetic storage, pumped hydro, compressed air, and capacitors). An agent-based stochastic model is used to randomly generate appliance-level demand profiles for an average U.S. household. We first introduce a levelized storage cost model which is based on a total-energy-throughput lifetime. We then develop a storage dispatch strategy which optimizes the storage capacity and the demand limit on the grid. We find that (i) several storage technologies provide profitable DR; (ii) annual profit from such DR can range from 1% to 39% of the household’s non-DR electricity bill; (iii) allowing occasional breaches of the intended demand limit increases profit; and (iv) a dispatch strategy that accounts for demand variations across seasons increases profit further. We expect that a more advanced dispatch strategy with embedded weather forecasting capability could yield even higher profit.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)