Flexible Thermoelectric Generators and 2-D Graphene pH Sensors for Wireless Sensing in Hot Spring Ecosystem

156146-Thumbnail Image.png
Description
Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data

Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data collecting in hot spring environment. The fabricated flexible TEGs can be easily deployed on the uneven surface of heated rocks at the rim of hot springs. By employing the temperature gradient between the hot rock surface and the air, these TEGs can generate power to extend the battery lifetime of the sensor notes and therefore reduce multiple batteries changes where the environment is usually harsh in hot springs. Also, they show great promise for self-powered wireless sensor notes. Traditional thermoelectric material bismuth telluride (Bi2Te3) and advanced MEMS (Microelectromechanical systems) thin film techniques were used for the fabrication. Test results show that when a flexible TEG array with an area of 3.4cm2 was placed on the hot plate surface of 80°C in the air under room temperature, it had an open circuit voltage output of 17.6mV and a short circuit current output of 0.53mA. The generated power was approximately 7mW/m2.

On the other hand, high pressure, temperatures that can reach boiling, and the pH of different hot springs ranging from <2 to >9 make hot spring ecosystem a unique environment that is difficult to study. WSN allows many scientific studies in harsh environments that are not feasible with traditional instrumentation. However, wireless pH sensing for long time in situ data collection is still challenging for two reasons. First, the existing commercial-off-the-shelf pH meters are frequent calibration dependent; second, biofouling causes significant measurement error and drift. In this work, 2-dimentional graphene pH sensors were studied and calibration free graphene pH sensor prototypes were fabricated. Test result shows the resistance of the fabricated device changes linearly with the pH values (in the range of 3-11) in the surrounding liquid environment. Field tests show graphene layer greatly prevented the microbial fouling. Therefore, graphene pH sensors are promising candidates that can be effectively used for wireless pH sensing in exploration of hot spring ecosystems.
Date Created
2018
Agent

Needleless Electro-Spinner

137835-Thumbnail Image.png
Description
Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce

Electrospun nanofibers can be prepared from various kinds of inorganic substances by electro-spinning techniques. They have great potential in many applications including super capacitors, lithium ion batteries, filtration, catalyst and enzyme carriers, and sensors [1]. The traditional way to produce electrospun nanofibers is needle based electro-spinning [1]. However, electrospun nanofibers have not been widely used in practice because of low nanofiber production rates. One way to largely increase the electro-spinning productivity is needleless electro-spinning. In 2005, Jirsak et al. patented a rotating roller fiber generator for the mass production of nanofibers [2]. Elmarco Corporation commercialized this technique to manufacture nanofiber equipment for the production of all sorts of organic and inorganic nanofibers, and named it "NanospiderTM". For this project, my goal is to build a needleless electro-spinner to produce nanofibers as the separator of lithium ion batteries. The model of this project is based on the design of rotating roller fiber generator, and is adapted from a project at North Dakota State University in 2011 [3].
Date Created
2012-12
Agent

Buckling Phenomenon in Pre-Stretched PDMS Substrates

137570-Thumbnail Image.png
Description
The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate the mechanical buckling characteristics in stiff thin film and soft

The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate the mechanical buckling characteristics in stiff thin film and soft substrate systems, and the importance of controlling them. In today's engineering research, wrinkling in systems in beginning to be viewed as a means for engineering innovation rather than failure. This research is important to further progress the possible applications the technology proposes, such as flexible electronics and tunable adhesives. This work utilizes a cost efficient and relatively easy method for generating and analyzing buckled systems. Ultra violate oxidation at ambient temperatures is exploited to create a stiff thin surface on rubber like polydimethylsiloxane, and couple with strain induction wrinkles are generated. Wrinkle characteristics such as amplitude, wavelengths and wetting properties were investigated. In simple cases, trends were confirmed that increased oxidation relates to increased buckle wavelengths, and increase in strain corresponds to a decrease in wavelength. Hierarchical buckles were produced in one-dimensional systems treated with a multi-step method; these were the first to be generated in the ASU labs. Unique topographic changes were produced in two-dimensional systems treated with the same method. Honeycomb or dome like structures were noted to occur, important as they undergo a different energy-reliving configuration compared to traditional parallel buckles. The information provided characterizes many aspects of the buckle phenomena and will allow for further inquiry into specific functions utilizing the technology to continue advancements in engineering.
Date Created
2013-05
Agent

Developing a Broadband Amplifier for Analysis of DNA Structural and Molecular Characteristics

136901-Thumbnail Image.png
Description
The recent emergence of DNA-based diagnostics increases the demand for rapid DNA sequencing technologies. One method to achieve this is to pass DNA through a nanopore, recording the trans-membrane current with a low-noise current amplifier. The project outlined in this

The recent emergence of DNA-based diagnostics increases the demand for rapid DNA sequencing technologies. One method to achieve this is to pass DNA through a nanopore, recording the trans-membrane current with a low-noise current amplifier. The project outlined in this report aims to demonstrate a design of a custom amplifier that offers a wider bandwidth than current designs while maintaining a low signal to noise ratio. The novel amplifier has been designed such that a multi-stage RF signal chain is integrated with an existing amplifier circuit to achieve DNA translocation. Both the existing amplifier circuit and the RF signal chain have produced outputs showing that the two amplifiers are functional and both low frequency signals and high frequency signals can be amplified with this comprehensive circuit design.
Date Created
2014-05
Agent

Stochastic Learning in Oxide Binary Synaptic Device for Neuromorphic Computing

128181-Thumbnail Image.png
Description

Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The

Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

Date Created
2013-10-31
Agent

Ionic liquid/water/particle systems: fundamentals through experiment, application and simulation

155117-Thumbnail Image.png
Description
Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired

Ionic liquids (ILs), or low-temperature liquid salts, are a class of materials with unique and useful properties. Made up entirely of ions, ILs are remarkably tunable and diverse as cations and anions can be mixed and matched to yield desired properties. Because of this, IL/water systems range widely—from homogeneous mixtures to multiphasic systems featuring ionic liquid/liquid interfaces. Even more diversity is added when particles are introduced to these systems, as hard particles or soft-matter microgels interact with both ILs and water in complex ways. This work examines both miscible ionic liquid/water mixture and two-phase, immiscible ionic liquid/water systems. Extensive molecular dynamics (MD) simulations are utilized in conjunction with physical measurements to inform theoretical understanding of the nature of these systems, and this theoretical understanding is related to practical applications—in particular, the development of a low-temperature liquid electrolyte for use in molecular electronic transducer (MET) seismometers, and particle self-assembly and transport at ionic liquid/liquid interfaces such as those in Pickering emulsions.

The homogenous mixture of 1-butyl-3-methylimidazolium iodide and water is examined extensively through MD as well as physical characterization of properties. Molecular ordering within the liquid mixture is related to macroscopic properties. These mixtures are then used as the basis of an electrolyte with unusual characteristics, specifically a wide liquid temperature range with an extremely low lower bound combined with relatively low viscosity allowing excellent performance in the MET sensor. Electrolyte performance is further improved by the addition of fullerene nanoparticles, which dramatically increase device sensitivity. The reasons behind this effect are explored by testing the effect of graphene surface size and through MD simulations of fullerene and a silica nanoparticle (for contrast) in [BMIM][I]/water mixtures.

Immiscible ionic liquid/water systems are explored through MD studies of particles at IL/water interfaces. By increasing the concentration of hydrophobic nanoparticles at the IL/water interface, one study discovers the formation of a commingled IL/water/particle pseudo-phase, and relates this discovery to previously-observed unique behaviors of these interfaces, particularly spontaneous particle transport across the interface. The other study demonstrates that IL hydrophobicity can influence the deformation of thermo-responsive soft particles at the liquid/liquid interface.
Date Created
2016
Agent

Molecular electronic transducer based seismic motion sensors micro-fabrication, packaging and validation

155105-Thumbnail Image.png
Description
The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial

The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular Electronic Transducers (MET) techniques.

Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 5 μm. The employment of MEMS improves the sensitivity of fabricated device to above 2500 V/(m/s2) under operating bias of 300 mV and input velocity of 8.4μm/s from 0.08Hz to 80Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -135 dB equivalent to 18nG/√Hz (G=9.8m/s2) around 1.2 Hz.

Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a feasibility study of development of a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is performed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet. With a specific design of 3D printing based package and replace water based iodide solution by room temperature ionic liquid based electrolyte, the sensitivity relative to the ground motion can reach 103.69V/g, with the resolution of 5.25μG/√Hz at 1Hz.

By combining MET techniques and Zn-Cu electrochemical cell (Galvanic cell), this letter demonstrates a passive motion sensor powered by self-electrochemistry energy, named “Battery Accelerometer”. The experimental results indicated the peak sensitivity of battery accelerometer at its resonant frequency 18Hz is 10.4V/G with the resolution of 1.71μG without power consumption.
Date Created
2016
Agent

Low-frequency accelerometer based on molecular electronic transducer in galvanic cell

154112-Thumbnail Image.png
Description
In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors

In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that can be used to detect the movement of liquid electrolyte between electrodes by converting it to an output current. Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise, small size and independence on the direction of sensitivity axis. In addition, the fact that MET based sensors have a liquid inertial mass with no moving parts makes them rugged and shock tolerant (basic survivability has been demonstrated to >20 kG).

A Zn-Cu electrochemical cell (Galvanic cell) was applied in the low-frequency accelerometer. Experimental results show that external vibrations (range from 18 to 70 Hz) were successfully detected by this accelerometer as reactions Zn→〖Zn〗^(2+)+2e^- occurs around the anode and 〖Cu〗^(2+)+2e^-→Cu around the cathode. Accordingly, the sensitivity of this MET device design is to achieve 10.4 V/G at 18 Hz. And the sources of noise have been analyzed.
Date Created
2015
Agent

Environmentally responsive hydrogels: development and integration with hard materials

154058-Thumbnail Image.png
Description
Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often

Environmentally responsive hydrogels are one interesting class of soft materials. Due to their remarkable responsiveness to stimuli such as temperature, pH, or light, they have attracted widespread attention in many fields. However, certain functionality of these materials alone is often limited in comparison to other materials such as silicon; thus, there is a need to integrate soft and hard materials for the advancement of environmental-ly responsive materials.

Conventional hydrogels lack good mechanical properties and have inherently slow response time, important characteristics which must be improved before the hydrogels can be integrated with silicon. In the present dissertation work, both these important attrib-utes of a temperature responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm), were improved by adopting a low temperature polymerization process and adding a sili-cate compound, tetramethyl orthosilicate. Furthermore, the transition temperature was modulated by adjusting the media quality in which the hydrogels were equilibrated, e.g. by adding a co-solvent (methanol) or an anionic surfactant (sodium dodecyl sulfate). In-terestingly, the results revealed that, based on the hydrogels’ porosity, there were appre-ciable differences when the PNIPAAm hydrogels interacted with the media molecules.

Next, an adhesion mechanism was developed in order to transfer silicon thin film onto the hydrogel surface. This integration provided a means of mechanical buckling of the thin silicon film due to changes in environmental stimuli (e.g., temperature, pH). We also investigated how novel transfer printing techniques could be used to generate pat-terned deformation of silicon thin film when integrated on a planar hydrogel substrate. Furthermore, we explore multilayer hybrid hydrogel structures formed by the integration of different types of hydrogels that have tunable curvatures under the influence of differ-ent stimuli. Silicon thin film integration on such tunable curvature substrates reveal char-acteristic reversible buckling of the thin film in the presence of multiple stimuli.

Finally, different approaches of incorporating visible light response in PNIPAAm are discussed. Specifically, a chemical chromophore- spirobenzopyran was synthesized and integrated through chemical cross-linking into the PNIPAAm hydrogels. Further, methods of improving the light response and mechanical properties were also demonstrat-ed. Interestingly, such a system was shown to have potential application as light modulated topography altering system
Date Created
2015
Agent

Kirigami-Based Stretchable Lithium-Ion Batteries

Description

We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by

We have produced stretchable lithium-ion batteries (LIBs) using the concept of kirigami, i.e., a combination of folding and cutting. The designated kirigami patterns have been discovered and implemented to achieve great stretchability (over 150%) to LIBs that are produced by standardized battery manufacturing. It is shown that fracture due to cutting and folding is suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be integrated and power a smart watch, which may disruptively impact the field of wearable electronics by offering extra physical and functionality design spaces.

Date Created
2015-06-11
Agent