ANK1 is Up-Regulated in Laser Captured Microglia in Alzheimer’s Brain: The Importance of Addressing Cellular Heterogeneity

128146-Thumbnail Image.png
Description

Recent epigenetic association studies have identified a new gene, ANK1, in the pathogenesis of Alzheimer’s disease (AD). Although strong associations were observed, brain homogenates were used to generate the data, introducing complications because of the range of cell types analyzed.

Recent epigenetic association studies have identified a new gene, ANK1, in the pathogenesis of Alzheimer’s disease (AD). Although strong associations were observed, brain homogenates were used to generate the data, introducing complications because of the range of cell types analyzed. In order to address the issue of cellular heterogeneity in homogenate samples we isolated microglial, astrocytes and neurons by laser capture microdissection from CA1 of hippocampus in the same individuals with a clinical and pathological diagnosis of AD and matched control cases. Using this unique RNAseq data set, we show that in the hippocampus, ANK1 is significantly (p<0.0001) up-regulated 4-fold in AD microglia, but not in neurons or astrocytes from the same individuals. These data provide evidence that microglia are the source of ANK1 differential expression previously identified in homogenate samples in AD.

Date Created
2017-07-12
Agent

Loss of the Tumor Suppressor SMARCA4 in Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT)

128379-Thumbnail Image.png
Description

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare and understudied cancer with a dismal prognosis. SCCOHT's infrequency has hindered empirical study of its biology and clinical management. However, we and others have recently identified inactivating mutations

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), is a rare and understudied cancer with a dismal prognosis. SCCOHT's infrequency has hindered empirical study of its biology and clinical management. However, we and others have recently identified inactivating mutations in the SWI/SNF chromatin remodeling gene SMARCA4 with concomitant loss of SMARCA4 protein in the majority of SCCOHT tumors. Here we summarize these findings and report SMARCA4 status by targeted sequencing and/or immunohistochemistry (IHC) in an additional 12 SCCOHT tumors, 3 matched germlines, and the cell line SCCOHT-1. We also report the identification of a homozygous inactivating mutation in the gene SMARCB1 in one SCCOHT tumor with wild-type SMARCA4, suggesting that SMARCB1 inactivation may also play a role in the pathogenesis of SCCOHT. To date, SMARCA4 mutations and protein loss have been reported in the majority of 69 SCCOHT cases (including 2 cell lines). These data firmly establish SMARCA4 as a tumor suppressor whose loss promotes the development of SCCOHT, setting the stage for rapid advancement in the biological understanding, diagnosis, and treatment of this rare tumor type.

Date Created
2014-11-03
Agent

Genome-Wide Characterization of Pancreatic Adenocarcinoma Patients Using Next Generation Sequencing

128865-Thumbnail Image.png
Description

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue,

Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.

Date Created
2012-10-10
Agent