Skip the Trip: Air Travelers' Behavioral Responses to Pandemic Influenza

128769-Thumbnail Image.png
Description

Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for

Theory suggests that human behavior has implications for disease spread. We examine the hypothesis that individuals engage in voluntary defensive behavior during an epidemic. We estimate the number of passengers missing previously purchased flights as a function of concern for swine flu or A/H1N1 influenza using 1.7 million detailed flight records, Google Trends, and the World Health Organization's FluNet data. We estimate that concern over “swine flu,” as measured by Google Trends, accounted for 0.34% of missed flights during the epidemic. The Google Trends data correlates strongly with media attention, but poorly (at times negatively) with reported cases in FluNet. Passengers show no response to reported cases. Passengers skipping their purchased trips forwent at least $50 M in travel related benefits. Responding to actual cases would have cut this estimate in half. Thus, people appear to respond to an epidemic by voluntarily engaging in self-protection behavior, but this behavior may not be responsive to objective measures of risk. Clearer risk communication could substantially reduce epidemic costs. People undertaking costly risk reduction behavior, for example, forgoing nonrefundable flights, suggests they may also make less costly behavior adjustments to avoid infection. Accounting for defensive behaviors may be important for forecasting epidemics, but linking behavior with epidemics likely requires consideration of risk communication.

Date Created
2013-03-20
Agent

A Population Based Study of Seasonality of Skin and Soft Tissue Infections: Implications for the Spread of CA-MRSA

128796-Thumbnail Image.png
Description

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data

Methicillin resistant Staphylococcus aureus (MRSA) is currently a major cause of skin and soft tissue infections (SSTI) in the United States. Seasonal variation of MRSA infections in hospital settings has been widely observed. However, systematic time-series analysis of incidence data is desirable to understand the seasonality of community acquired (CA)-MRSA infections at the population level. In this paper, using data on monthly SSTI incidence in children aged 0–19 years and enrolled in Medicaid in Maricopa County, Arizona, from January 2005 to December 2008, we carried out time-series and nonlinear regression analysis to determine the periodicity, trend, and peak timing in SSTI incidence in children at different age: 0-4 years, 5-9 years, 10-14 years, and 15-19 years. We also assessed the temporal correlation between SSTI incidence and meteorological variables including average temperature and humidity. Our analysis revealed a strong annual seasonal pattern of SSTI incidence with peak occurring in early September. This pattern was consistent across age groups. Moreover, SSTIs followed a significantly increasing trend over the 4-year study period with annual incidence increasing from 3.36% to 5.55% in our pediatric population of approximately 290,000. We also found a significant correlation between the temporal variation in SSTI incidence and mean temperature and specific humidity. Our findings could have potential implications on prevention and control efforts against CA-MRSA.

Date Created
2013-04-02

Occupation and Environmental Heat-Associated Deaths in Maricopa County, Arizona: A Case-Control Study

128804-Thumbnail Image.png
Description

Background: Prior research shows that work in agriculture and construction/extraction occupations increases the risk of environmental heat-associated death.

Purpose: To assess the risk of environmental heat-associated death by occupation.

Methods: This was a case-control study. Cases were heat-caused and heat-related deaths occurring from May-October during

Background: Prior research shows that work in agriculture and construction/extraction occupations increases the risk of environmental heat-associated death.

Purpose: To assess the risk of environmental heat-associated death by occupation.

Methods: This was a case-control study. Cases were heat-caused and heat-related deaths occurring from May-October during the period 2002–2009 in Maricopa County, Arizona. Controls were selected at random from non-heat-associated deaths during the same period in Maricopa County. Information on occupation, age, sex, and race-ethnicity was obtained from death certificates. Logistic regression analysis was used to estimate odds ratios for heat-associated death.

Results: There were 444 cases of heat-associated deaths in adults (18+ years) and 925 adult controls. Of heat-associated deaths, 332 (75%) occurred in men; a construction/extraction or agriculture occupation was described on the death certificate in 115 (35%) of these men. In men, the age-adjusted odds ratios for heat-associated death were 2.32 (95% confidence interval 1.55, 3.48) in association with construction/extraction and 3.50 (95% confidence interval 1.94, 6.32) in association with agriculture occupations. The odds ratio for heat-associated death was 10.17 (95% confidence interval 5.38, 19.23) in men with unknown occupation. In women, the age-adjusted odds ratio for heat-associated death was 6.32 (95% confidence interval 1.48, 27.08) in association with unknown occupation. Men age 65 years and older in agriculture occupations were at especially high risk of heat-associated death.

Conclusion: The occurrence of environmental heat-associated death in men in agriculture and construction/extraction occupations in a setting with predictable periods of high summer temperatures presents opportunities for prevention.

Date Created
2013-05-29
Agent

Influenza-Related Mortality Trends in Japanese and American Seniors: Evidence for the Indirect Mortality Benefits of Vaccinating Schoolchildren

128838-Thumbnail Image.png
Description

Background: The historical Japanese influenza vaccination program targeted at schoolchildren provides a unique opportunity to evaluate the indirect benefits of vaccinating high-transmitter groups to mitigate disease burden among seniors. Here we characterize the indirect mortality benefits of vaccinating schoolchildren based on

Background: The historical Japanese influenza vaccination program targeted at schoolchildren provides a unique opportunity to evaluate the indirect benefits of vaccinating high-transmitter groups to mitigate disease burden among seniors. Here we characterize the indirect mortality benefits of vaccinating schoolchildren based on data from Japan and the US.

Methods: We compared age-specific influenza-related excess mortality rates in Japanese seniors aged ≥65 years during the schoolchildren vaccination program (1978–1994) and after the program was discontinued (1995–2006). Indirect vaccine benefits were adjusted for demographic changes, socioeconomics and dominant influenza subtype; US mortality data were used as a control.

Results: We estimate that the schoolchildren vaccination program conferred a 36% adjusted mortality reduction among Japanese seniors (95%CI: 17–51%), corresponding to ∼1,000 senior deaths averted by vaccination annually (95%CI: 400–1,800). In contrast, influenza-related mortality did not change among US seniors, despite increasing vaccine coverage in this population.

Conclusions: The Japanese schoolchildren vaccination program was associated with substantial indirect mortality benefits in seniors.

Date Created
2011-11-07
Agent

Influenza and Pneumonia Mortality in 66 Large Cities in the United States in Years Surrounding the 1918 Pandemic

128839-Thumbnail Image.png
Description

The 1918 influenza pandemic was a major epidemiological event of the twentieth century resulting in at least twenty million deaths worldwide; however, despite its historical, epidemiological, and biological relevance, it remains poorly understood. Here we examine the relationship between annual

The 1918 influenza pandemic was a major epidemiological event of the twentieth century resulting in at least twenty million deaths worldwide; however, despite its historical, epidemiological, and biological relevance, it remains poorly understood. Here we examine the relationship between annual pneumonia and influenza death rates in the pre-pandemic (1910–17) and pandemic (1918–20) periods and the scaling of mortality with latitude, longitude and population size, using data from 66 large cities of the United States. The mean pre-pandemic pneumonia death rates were highly associated with pneumonia death rates during the pandemic period (Spearman ρ = 0.64–0.72; P<0.001). By contrast, there was a weak correlation between pre-pandemic and pandemic influenza mortality rates. Pneumonia mortality rates partially explained influenza mortality rates in 1918 (ρ = 0.34, P = 0.005) but not during any other year. Pneumonia death counts followed a linear relationship with population size in all study years, suggesting that pneumonia death rates were homogeneous across the range of population sizes studied. By contrast, influenza death counts followed a power law relationship with a scaling exponent of ∼0.81 (95%CI: 0.71, 0.91) in 1918, suggesting that smaller cities experienced worst outcomes during the pandemic. A linear relationship was observed for all other years. Our study suggests that mortality associated with the 1918–20 influenza pandemic was in part predetermined by pre-pandemic pneumonia death rates in 66 large US cities, perhaps through the impact of the physical and social structure of each city. Smaller cities suffered a disproportionately high per capita influenza mortality burden than larger ones in 1918, while city size did not affect pneumonia mortality rates in the pre-pandemic and pandemic periods.

Date Created
2011-08-19

Epidemiological Characteristics and Underlying Risk Factors for Mortality During the Autumn 2009 Pandemic Wave in Mexico

128887-Thumbnail Image.png
Description

Background: Elucidating the role of the underlying risk factors for severe outcomes of the 2009 A/H1N1 influenza pandemic could be crucial to define priority risk groups in resource-limited settings in future pandemics.

Methods: We use individual-level clinical data on a large series of

Background: Elucidating the role of the underlying risk factors for severe outcomes of the 2009 A/H1N1 influenza pandemic could be crucial to define priority risk groups in resource-limited settings in future pandemics.

Methods: We use individual-level clinical data on a large series of ARI (acute respiratory infection) hospitalizations from a prospective surveillance system of the Mexican Social Security medical system to analyze clinical features at presentation, admission delays, selected comorbidities and receipt of seasonal vaccine on the risk of A/H1N1-related death. We considered ARI hospitalizations and inpatient-deaths, and recorded demographic, geographic, and medical information on individual patients during August-December, 2009.

Results: Seasonal influenza vaccination was associated with a reduced risk of death among A/H1N1 inpatients (OR = 0.43 (95% CI: 0.25, 0.74)) after adjustment for age, gender, geography, antiviral treatment, admission delays, comorbidities and medical conditions. However, this result should be interpreted with caution as it could have been affected by factors not directly measured in our study. Moreover, the effect of antiviral treatment against A/H1N1 inpatient death did not reach statistical significance (OR = 0.56 (95% CI: 0.29, 1.10)) probably because only 8.9% of A/H1N1 inpatients received antiviral treatment. Moreover, diabetes (OR = 1.6) and immune suppression (OR = 2.3) were statistically significant risk factors for death whereas asthmatic persons (OR = 0.3) or pregnant women (OR = 0.4) experienced a reduced fatality rate among A/H1N1 inpatients. We also observed an increased risk of death among A/H1N1 inpatients with admission delays >2 days after symptom onset (OR = 2.7). Similar associations were also observed for A/H1N1-negative inpatients.

Conclusions: Geographical variation in identified medical risk factors including prevalence of diabetes and immune suppression may in part explain between-country differences in pandemic mortality burden. Furthermore, access to care including hospitalization without delay and antiviral treatment and are also important factors, as well as vaccination coverage with the 2008–09 trivalent inactivated influenza vaccine.

Date Created
2012-07-16

Did Modeling Overestimate the Transmission Potential of Pandemic (H1N1-2009)? Sample Size Estimation for Post-Epidemic Seroepidemiological Studies

130348-Thumbnail Image.png
Description
Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of

Background
Seroepidemiological studies before and after the epidemic wave of H1N1-2009 are useful for estimating population attack rates with a potential to validate early estimates of the reproduction number, R, in modeling studies.
Methodology/Principal Findings
Since the final epidemic size, the proportion of individuals in a population who become infected during an epidemic, is not the result of a binomial sampling process because infection events are not independent of each other, we propose the use of an asymptotic distribution of the final size to compute approximate 95% confidence intervals of the observed final size. This allows the comparison of the observed final sizes against predictions based on the modeling study (R = 1.15, 1.40 and 1.90), which also yields simple formulae for determining sample sizes for future seroepidemiological studies. We examine a total of eleven published seroepidemiological studies of H1N1-2009 that took place after observing the peak incidence in a number of countries. Observed seropositive proportions in six studies appear to be smaller than that predicted from R = 1.40; four of the six studies sampled serum less than one month after the reported peak incidence. The comparison of the observed final sizes against R = 1.15 and 1.90 reveals that all eleven studies appear not to be significantly deviating from the prediction with R = 1.15, but final sizes in nine studies indicate overestimation if the value R = 1.90 is used.
Conclusions
Sample sizes of published seroepidemiological studies were too small to assess the validity of model predictions except when R = 1.90 was used. We recommend the use of the proposed approach in determining the sample size of post-epidemic seroepidemiological studies, calculating the 95% confidence interval of observed final size, and conducting relevant hypothesis testing instead of the use of methods that rely on a binomial proportion.
Date Created
2011-03-24

Transmission Potential of Influenza A/H7N9, February to May 2013, China

128953-Thumbnail Image.png
Description

Background: On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013,

Background: On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness.

Methods: We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses.

Results: Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus.

Conclusion: Although uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months.

Date Created
2013-10-02

Spatial-Temporal Excess Mortality Patterns of the 1918-1919 Influenza Pandemic in Spain

128959-Thumbnail Image.png
Description

Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that

Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden.

Methods: We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization.

Results: Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south–north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918–19, but different factors explained mortality variation in each wave.

Conclusions: A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918-19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality.

Date Created
2014-07-05

Mortality and Transmissibility Patterns of the 1957 Influenza Pandemic in Maricopa County, Arizona

128998-Thumbnail Image.png
Description

Background: While prior studies have quantified the mortality burden of the 1957 H2N2 influenza pandemic at broad geographic regions in the United States, little is known about the pandemic impact at a local level. Here we focus on analyzing the transmissibility

Background: While prior studies have quantified the mortality burden of the 1957 H2N2 influenza pandemic at broad geographic regions in the United States, little is known about the pandemic impact at a local level. Here we focus on analyzing the transmissibility and mortality burden of this pandemic in Arizona, a setting where the dry climate was promoted as reducing respiratory illness transmission yet tuberculosis prevalence was high.

Methods: Using archival death certificates from 1954 to 1961, we quantified the age-specific seasonal patterns, excess-mortality rates, and transmissibility patterns of the 1957 H2N2 pandemic in Maricopa County, Arizona. By applying cyclical Serfling linear regression models to weekly mortality rates, the excess-mortality rates due to respiratory and all-causes were estimated for each age group during the pandemic period. The reproduction number was quantified from weekly data using a simple growth rate method and assumed generation intervals of 3 and 4 days. Local newspaper articles published during 1957–1958 were also examined.

Results: Excess-mortality rates varied between waves, age groups, and causes of death, but overall remained low. From October 1959-June 1960, the most severe wave of the pandemic, the absolute excess-mortality rate based on respiratory deaths per 10,000 population was 16.59 in the elderly (≥65 years). All other age groups exhibit very low excess-mortality and the typical U-shaped age-pattern was absent. However, the standardized mortality ratio was greatest (4.06) among children and young adolescents (5–14 years) from October 1957-March 1958, based on mortality rates of respiratory deaths. Transmissibility was greatest during the same 1957–1958 period, when the mean reproduction number was estimated at 1.08–1.11, assuming 3- or 4-day generation intervals with exponential or fixed distributions.

Conclusions: Maricopa County exhibited very low mortality impact associated with the 1957 influenza pandemic. Understanding the relatively low excess-mortality rates and transmissibility in Maricopa County during this historic pandemic may help public health officials prepare for and mitigate future outbreaks of influenza.

Date Created
2016-08-11
Agent