Spatiotemporal Patterns and Predictability of Cyberattacks

Description

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

Date Created
2015-05-20
Agent

Optimization and Resilience of Complex Supply-Demand Networks

Description

Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load

Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low efficiency, resource scarcity, and partial system failures. Under certain conditions global catastrophe on the scale of the whole system can occur through the dynamical process of cascading failures. We investigate optimization and resilience of time-varying supply-demand systems by constructing network models of such systems, where resources are transported from the supplier sites to users through various links. Here by optimization we mean minimization of the maximum load on links, and system resilience can be characterized using the cascading failure size of users who fail to connect with suppliers.

We consider two representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are: (1) optimized systems are more robust since relatively smaller cascading failures occur when triggered by external perturbation to the links; (2) a large fraction of links can be free of load if resources are directed to transport through the shortest paths; (3) redundant links in the performance of the system can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system; (4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific location of the trigger determines the specific route of cascading failure, but has little effect on the final cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold for heterogeneous networks in general, providing insights into designing optimal and resilient complex supply-demand systems that expand constantly in time.

Date Created
2015-06-23
Agent

Complex Behavior of Chaotic Synchronization Under Dual Coupling Channels

129233-Thumbnail Image.png
Description

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables. Using the standard framework of master-stability function (MSF), we investigate

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables. Using the standard framework of master-stability function (MSF), we investigate the emergence of complex synchronization behaviors under all possible configurations of two-channel coupling, which include, for example, all possible cross coupling schemes among the dynamical variables. Utilizing the classic Rössler and Lorenz oscillators, we find a rich variety of synchronization phenomena not present in any previously extensively studied, single-channel coupling configurations. For example, in many cases two coupling channels can enhance or even generate synchronization where there is only weak or no synchronization under only one coupling channel, which has been verified in a coupled neuron system. There are also cases where the oscillators are originally synchronized under one coupling channel, but an additional synchronizable coupling channel can, however, destroy synchronization. Direct numerical simulations of actual synchronization dynamics verify the MSF-based predictions. Our extensive computation and heuristic analysis provide an atlas for synchronization of chaotic oscillators coupled through two channels, which can be used as a systematic reference to facilitate further research in this area.

Date Created
2015-02-18
Agent

Early Effect in Time-Dependent, High-Dimensional Nonlinear Dynamical Systems With Multiple Resonances

129275-Thumbnail Image.png
Description

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.

Date Created
2015-02-09
Agent

Universal Formalism of Fano Resonance

129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest.

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

Date Created
2015-01-01
Agent

Superpersistent Currents and Whispering Gallery Modes in Relativistic Quantum Chaotic Systems

129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

Date Created
2015-03-11
Agent

Quantum Chaotic Tunneling in Graphene Systems With Electron-Electron Interactions

129346-Thumbnail Image.png
Description

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.

Date Created
2014-12-16
Agent

Triple Grouping and Period-Three Oscillations in Minority-Game Dynamics

129347-Thumbnail Image.png
Description

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

Date Created
2014-12-23
Agent

Suppression of Epidemic Spreading in Complex Networks by Local Information Based Behavioral Responses

129362-Thumbnail Image.png
Description

The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the

The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a model where individuals' behavioral response is based on a generic type of local information, i.e., the number of neighbors that has been infected with the disease. Mathematically, the response can be characterized by a reduction in the transmission rate by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading, we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our analysis lays on a solid quantitative footing the intuition that individual behavioral response can in general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of “double-edged sword” in that they can either suppress or promote outbreak, depending on their responses to the epidemic, providing additional support for the idea that these nodes are key to controlling epidemic spreading in complex networks.

Date Created
2014-12-01
Agent

Scaling and Correlation of Human Movements in Cyberspace and Physical Space

129372-Thumbnail Image.png
Description

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of

Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit〈f〉and its fluctuation σ : σ ∼〈f⟩β with β ≈ 1.2. The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

Date Created
2014-11-12
Agent