Network Reconstruction Based on Evolutionary-Game Data Via Compressive Sensing

128004-Thumbnail Image.png
Description

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on compressive sensing, we develop an efficient approach to reconstructing complex networks under game-based interactions from small amounts of data. The method is validated by using a variety of model networks and by conducting an actual experiment to reconstruct a social network. While most existing methods in this area assume oscillator networks that generate continuous-time data, our work successfully demonstrates that the extremely challenging problem of reverse engineering of complex networks can also be addressed even when the underlying dynamical processes are governed by realistic, evolutionary-game type of interactions in discrete time.

Date Created
2011-12-21
Agent

Universal Framework for Edge Controllability of Complex Network

128119-Thumbnail Image.png
Description

Dynamical processes occurring on the edges in complex networks are relevant to a variety of real-world situations. Despite recent advances, a framework for edge controllability is still required for complex networks of arbitrary structure and interaction strength. Generalizing a previously

Dynamical processes occurring on the edges in complex networks are relevant to a variety of real-world situations. Despite recent advances, a framework for edge controllability is still required for complex networks of arbitrary structure and interaction strength. Generalizing a previously introduced class of processes for edge dynamics, the switchboard dynamics, and exploit- ing the exact controllability theory, we develop a universal framework in which the controllability of any node is exclusively determined by its local weighted structure. This framework enables us to identify a unique set of critical nodes for control, to derive analytic formulas and articulate efficient algorithms to determine the exact upper and lower controllability bounds, and to evaluate strongly structural controllability of any given network. Applying our framework to a large number of model and real-world networks, we find that the interaction strength plays a more significant role in edge controllability than the network structure does, due to a vast range between the bounds determined mainly by the interaction strength. Moreover, transcriptional regulatory networks and electronic circuits are much more strongly structurally controllable (SSC) than other types of real-world networks, directed networks are more SSC than undirected networks, and sparse networks are typically more SSC than dense networks.

Date Created
2017-06-26
Agent

Optimal Localization of Diffusion Sources in Complex Networks

128342-Thumbnail Image.png
Description

Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for

Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are discerned, the problem of optimal source localization becomes one of sparse signal reconstruction, which can be solved using compressive sensing. Application of our framework to model and empirical networks demonstrates that sources in homogeneous and denser networks are more readily to be located. A surprising finding is that, for a connected undirected network with random link weights and weak noise, a single messenger node is sufficient for locating any number of sources. The framework deepens our understanding of the network source localization problem and offers efficient tools with broad applications.

Date Created
2017-04-12
Agent

Energy Scaling and Reduction in Controlling Complex Networks

128389-Thumbnail Image.png
Description

Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as

Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks.

Date Created
2016-04-20
Agent

Data-Based Reconstruction of Complex Geospatial Networks, Nodal Positioning, and Detection of Hidden Nodes

128391-Thumbnail Image.png
Description

Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time

Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays. A standard triangularization algorithm can then be employed to find the physical locations of the nodes in the network. We further demonstrate successful detection of a hidden node (or a hidden source or threat), from which no signal can be obtained, through accurate detection of all its neighbouring nodes. As a geospatial network has the feature that a node tends to connect with geophysically nearby nodes, the localized region that contains the hidden node can be identified.

Date Created
2016-01-06
Agent

Reconstructing Direct and Indirect Interactions in Networked Public Goods Game

128511-Thumbnail Image.png
Description

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

Date Created
2016-07-22
Agent

Physical Controllability of Complex Networks

128519-Thumbnail Image.png
Description

A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes.

A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control.

Date Created
2017-01-11
Agent

A Geometrical Approach to Control and Controllability of Nonlinear Dynamical Networks

128539-Thumbnail Image.png
Description

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

Date Created
2016-04-14
Agent

Control Efficacy of Complex Networks

128560-Thumbnail Image.png
Description

Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations

Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

Date Created
2016-06-21
Agent

Scaling Behaviours in the Growth of Networked Systems and Their Geometric Origins

Description

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there exists some general mechanisms that account for the origins of such scaling behaviours in different contexts, especially in socioeconomic systems, remains an open question. We address this problem by introducing a geometric network model without free parameter, finding that both super-linear and sub-linear scaling behaviours can be simultaneously reproduced and that the scaling exponents are exclusively determined by the dimension of the Euclidean space in which the network is embedded. We implement some realistic extensions to the basic model to offer more accurate predictions for cities of various scaling behaviours and the Zipf distribution reported in the literature and observed in our empirical studies. All of the empirical results can be precisely recovered by our model with analytical predictions of all major properties. By virtue of these general findings concerning scaling behaviour, our models with simple mechanisms gain new insights into the evolution and development of complex networked systems.

Date Created
2015-04-29
Agent