Probing the Excited State Dynamics of Aluminum Clusters as a Means of Identifying Metallicity

193682-Thumbnail Image.png
Description
Pure metal clusters serve as model systems by providing an avenue for the study of fundamental phenomena, specifically the interaction between light and matter. Bulk metal materials are known to display defining characteristics, namely thermal conductivity, electrical conductivity, and luster,

Pure metal clusters serve as model systems by providing an avenue for the study of fundamental phenomena, specifically the interaction between light and matter. Bulk metal materials are known to display defining characteristics, namely thermal conductivity, electrical conductivity, and luster, which provide a quantifiable measure of their metallicity. These properties are all due to the electron delocalization throughout the metal. Nanoscale materials lack the ability to measure these properties, leading to the need for a manner of quantifying the metallic character at the nanoscale size regime.Excited state lifetimes vary for semiconducting and metallic systems, specifically metals relax to a ground state at a faster rate than semiconducting materials. Aluminum clusters have received decades of attention regarding their metallicity. Moreover, Al clusters have been debated to fit into the jellium model. The jellium model seeks to describe a cluster as a “superatom” where all electrons are delocalized around the positively charged metal center, like that of an atom. With three valence electrons, jellium shell closings can be met if the electrons involved in cluster bonding varies. This variance leads to a localization of electrons for instances in which all three electrons do not contribute to bonding. Localized electrons aren’t characteristic of the jellium model or metals more broadly. Tracking the excited state lifetimes of Al clusters produced through laser ablation seeks to uncover the onset of metallic character. Femtosecond pump-probe spectroscopy coupled with time-of-flight mass spectrometry has resolved the time dynamics for atomically precise Al clusters ranging in size from 1-43 atoms. At a size greater than 9 atoms, it’s identified that Al clusters show metallic character. This finding is supported by previous literature results and the fact that, above 9 atoms, Al cluster excited state lifetimes match that of the bulk scale Al excited state lifetime of ~300 fs.
Date Created
2024
Agent

Molecular Approaches to Solar Fuel Production

189379-Thumbnail Image.png
Description
The conversion of water to hydrogen and of carbon dioxide to industrially relevant chemical precursors are examples of reactions that can be used to store renewable energy as fuels or chemical building blocks for creating sustainable chemical manufacturing cycles. Unfortunately,

The conversion of water to hydrogen and of carbon dioxide to industrially relevant chemical precursors are examples of reactions that can be used to store renewable energy as fuels or chemical building blocks for creating sustainable chemical manufacturing cycles. Unfortunately, current industrial catalysts for these transformations are reliant on relatively expensive and/or rare materials, such as platinum in the case of hydrogen generation, or lack selectivity towards producing a desired chemical product. Such drawbacks prevent global-scale applications. Although replacing such catalysts with more efficient and earth-abundant catalysts could improve this situation, the fundamental science required for this is lacking. In the first part of this dissertation, the synthesis and characterization of a novel binuclear iron fused porphyrin designed to break traditional scaling relationships in electrocatalysis is presented. Key features of the fused porphyrin include: 1) bimetallic sites, 2) a π-extended ligand that delocalizes electrons across the multimetallic scaffold, and 3) the ability to store up to six reducing equivalents. In the second part of this thesis, the electrochemical characterization of benzimidazole-phenols as “proton wires” is described. These bioinspired assemblies model the tyrosine-histidine pair of photosystem II, which serves as a redox mediator between the light-harvesting reaction center P680 and the oxygen evolution complex that enables production of molecular oxygen from water in cyanobacteria, algae, and higher plants. Results show that as the length of the hydrogen-bond network increases across a series of benzimidazole-phenols, the midpoint potential of the phenoxyl/phenol redox couple becomes less oxidizing. However, benzimidazole-phenols containing electron-withdrawing trifluoromethyl substituents enable access to potentials that are thermodynamically sufficient for oxidative processes relevant to artificial photosynthesis, including the oxidation of water, while translocating protons over ~11 Å.
Date Created
2023
Agent

Ultrafast Dynamics of Excited States of Molecules and Clusters

171596-Thumbnail Image.png
Description
The movement of energy within a material is at the heart of numerous fundamental properties of chemistry and physics. Studying the process of photo-absorption in real time provides key insights into how energy is captured, stabilized, and dissipated within a

The movement of energy within a material is at the heart of numerous fundamental properties of chemistry and physics. Studying the process of photo-absorption in real time provides key insights into how energy is captured, stabilized, and dissipated within a material. The work presented in this thesis uses ultrafast time-of-flight mass spectrometry and computational modeling to observe and understand the properties of photo-excited states within molecules and clusters. Experimental results provide direct measurement of excited state lifetimes, while computational modeling provides a more thorough understanding of the movement of energy within an excited state. Excited state dynamics in covalent molecules such as n-butyl bromide (C4H9Br), presented in Chapter 4, demonstrate the significance of IVR of photo-excited states. Exciting to the high energy Rydberg manifold leads to predissociation into fragments of various lengths and degrees of saturation but the predissociation process is disrupted by energy redistribution into hot vibrational states. Experimental lifetimes show that IVR occurs over rapidly (~ 600 fs) leaving less energy for bond dissociation. Additionally, a long-lived feature in the dynamics of C4H9+ shows evidence of ion-pair formation – a known phenomenon which creates a stable A+/B- pair separated by several angstroms and occurring at energies lower than direct ionization. The results of this research show the dynamics of energy transfer into bond fragmentation, kinetic energy, and vibrational motion. Metal-oxide clusters are unique materials which are representative of bulk materials but with quantized excited states instead of bands and as such can be used as atomically precise analogs to semiconducting materials. Excited state lifetimes and theoretical descriptors of electron-hole interactions of titanium oxide clusters, presented in Chapter 5, shows the significance of structure and oxidation of charge-transfer materials. Modeling the excited states of the photo-generated electrons and holes provides a window into the dynamics of charge-transfer and electron-hole separation and recombination in bulk materials. Furthermore, changes in the oxidation of the cluster have a dramatic impact on the nature of excited states and overall cluster properties. Such changes are analogous to oxygen defects in bulk materials and are critical for understanding reaction chemistry at defect sites.
Date Created
2022
Agent

Excited State Dynamics of First-Row Transition Metal Oxide Clusters

168410-Thumbnail Image.png
Description
Transition metal oxides are used for numerous applications, includingsemiconductors, batteries, solar cells, catalysis, magnetic devices, and are commonly observed in interstellar media. However, the atomic-scale properties which dictate the overall bulk material activity is still lacking fundamental details. Most importantly, how the electron

Transition metal oxides are used for numerous applications, includingsemiconductors, batteries, solar cells, catalysis, magnetic devices, and are commonly observed in interstellar media. However, the atomic-scale properties which dictate the overall bulk material activity is still lacking fundamental details. Most importantly, how the electron shells of metals and O atoms mix is inherently significant to reactivity. This thesis compares the binding and excited state properties of highly correlated first-row transition metal oxides using four separate transition metal systems of Ti, Cr, Fe and Ni. Laser ablation coupled with femtosecond pump-probe spectroscopy is utilized to resolve the time-dependent excited state relaxation dynamics of atomically precise neutral clusters following 400 nm (3.1 eV) photoexcitation. All transition metal oxides form unique stable stoichiometries with excited state dynamics that evolve due to oxidation, size, or geometry. Theoretical calculations assist in experimental analysis, showing correlations between charge transfer characteristics, electron and hole localization, and magnetic properties to the experimentally determined excited state lifetimes. This thesis finds that neutral Ti and Cr form stable stoichiometries of MO2 (M = Ti, Cr) which easily lose up to two O atoms, while neutral Fe and Ni primarily form MO (M = Fe, Ni) geometries with suboxides also produced. TiO2 clusters possess excited state lifetimes that increase with additional cluster units to ~600 fs, owing to a larger delocalization of excited charge carriers with cluster size. CrO2 clusters show a unique inversed metallic behavior with O content, where the fast (~30 fs) metallic relaxation component associated with electron scattering increases with higher O content, connected to the percent of ligand-to-metal charge transfer (LMCT) character and higher density of states. FeO clusters show a decreased lifetime with size, reaching a plateau of ~150 fs at the size of (FeO)5 related to the density of states as clusters form 3D geometries. Finally, neutral (NiO)n clusters all have similar fast lifetimes (~110 fs), with suboxides possessing unexpected electronic transitions involving s-orbitals, increasing excited state lifetimes up to 80% and causing long-lived states lasting over 2.5 ps. Similarities are drawn between each cluster system, providing valuable information about each metal oxide species and the evolution of excited state dynamics as a result of the occupied d-shell. The work presented within this thesis will lead to novel materials of increased reactivity while facilitating a deeper fundamental understanding on the effect of electron interactions on chemical properties.
Date Created
2021
Agent

Synthesis of Acetylenic Carbon Molecules via Pulsed Laser Ablation in Ethanol

156536-Thumbnail Image.png
Description
New forms of carbon are being discovered at a rapid rate and prove to be on the frontier of cutting edge technology. Carbon possesses three energetically competitive forms of orbital hybridization, leading to exceptional blends of properties unseen in other

New forms of carbon are being discovered at a rapid rate and prove to be on the frontier of cutting edge technology. Carbon possesses three energetically competitive forms of orbital hybridization, leading to exceptional blends of properties unseen in other materials. Fascinating properties found among carbon allotropes, such as, fullerenes, carbon nanotubes, and graphene have led to new and exciting advancement, with recent applications in defense, energy storage, construction, and electronics. Various combinations of extreme strength, high electrical and thermal conductivity, flexibility, and light weight have led to new durable and flexible display screens, optoelectronics, quantum computing, and strength enhancer coating. The quest for new carbon allotropes and future application persists.

Despite the advances in carbon-based technology, researchers have been limited to sp3 and sp2 hybridizations. While sp3 and sp2 hybridizations of carbon are well established and understood, the simplest sp1 hybridized carbon allotrope, carbyne, has been impossible to synthesize and remains elusive. This dissertation presents recent results in characterizing a new sp1 carbon material produced from using pulsed laser ablation in liquid (PLAL) to ablate a gold surface that is immersed in a carbon rich liquid. The PLAL technique provides access to extremely non-thermal environmental conditions where unexplored chemical reactions occur and can be explored to access the production of new materials. A combination of experimental and theoretical results suggests gold clusters can act as stabilizing agents as they react and adsorb onto the surface of one dimensional carbon chains to form a new class of materials termed “pseudocarbynes”. Data from several characterization techniques, including Raman spectroscopy, UV/VIS spectroscopy, and transmission electron microscopy (TEM), provide evidence for the existence of pseudocarbyne. This completely new material may possess outstanding properties, a trend seen among carbon allotropes, that can further scientific advancements.
Date Created
2018
Agent