Security and Usability in Mobile and IoT Systems

158606-Thumbnail Image.png
Description
Mobile and Internet-of-Things (IoT) systems have been widely used in many aspects

of human’s life. These systems are storing and operating on more and more sensitive

data of users. Attackers may want to obtain the data to peek at users’ privacy or

pollute

Mobile and Internet-of-Things (IoT) systems have been widely used in many aspects

of human’s life. These systems are storing and operating on more and more sensitive

data of users. Attackers may want to obtain the data to peek at users’ privacy or

pollute the data to cause system malfunction. In addition, these systems are not

user-friendly for some people such as children, senior citizens, and visually impaired

users. Therefore, it is of cardinal significance to improve both security and usability

of mobile and IoT systems. This report consists of four parts: one automatic locking

system for mobile devices, one systematic study of security issues in crowdsourced

indoor positioning systems, one usable indoor navigation system, and practical attacks

on home alarm IoT systems.

Chapter 1 overviews the challenges and existing solutions in these areas. Chapater

2 introduces a novel system ilock which can automatically and immediately lock the

mobile devices to prevent data theft. Chapter 3 proposes attacks and countermeasures

for crowdsourced indoor positioning systems. Chapter 4 presents a context-aware indoor

navigation system which is more user-friendly for visual impaired people. Chapter

5 investigates some novel attacks on commercial home alarm systems. Chapter 6

concludes the report and discuss the future work.
Date Created
2020
Agent

Stochastic Analysis of Networked Systems

158599-Thumbnail Image.png
Description
This dissertation presents a novel algorithm for recovering missing values of co-evolving time series with partial embedded network information. The idea is to connect two sources of data through a shared low dimensional latent space. The proposed algorithm, named NetDyna,

This dissertation presents a novel algorithm for recovering missing values of co-evolving time series with partial embedded network information. The idea is to connect two sources of data through a shared low dimensional latent space. The proposed algorithm, named NetDyna, is an Expectation-Maximization algorithm, and uses the Kalman filter and matrix factorization approaches to infer the missing values both in the time series and embedded network. The experimental results on real datasets, including a Motes dataset and a Motion Capture dataset, show that (1) NetDyna outperforms other state-of-the-art algorithms, especially with partially observed network information; (2) its computational complexity scales linearly with the time duration of time series; and (3) the algorithm recovers the embedded network in addition to missing time series values.

This dissertation also studies a load balancing algorithm, the so called power-of-two-choices(Po2), for many-server systems (with N servers) and focuses on the convergence of stationary distribution of Po2 in the both light and heavy traffic regimes to the solution of mean-field system. The framework of Stein’s method and state space collapse (SSC) are used to analyze both regimes.

In both regimes, the thesis first uses the argument of state space collapse to show that the probability of the state being far from the mean-field solution is small enough. By a simple Markov inequality, it is able to show that the probability is indeed very small with a proper choice of parameters.

Then, for the state space close to the solution of mean-field model, the thesis uses Stein’s method to show that the stochastic system is close to a linear mean-field model. By characterizing the generator difference, it is able to characterize the dominant terms in both regimes. Note that for heavy traffic case, the lower and upper bound analysis of a tridiagonal matrix, which arises from the linear mean-field model, is needed. From the dominant term, it allows to calculate the coefficient of the convergence rate.

In the end, comparisons between the theoretical predictions and numerical simulations are presented.
Date Created
2020
Agent

Scheduling in Wireless and Healthcare Networks

158513-Thumbnail Image.png
Description
This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is

This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is considered. A cycle of planning horizon is called a frame, which consists of a fixed number of time slots. The size of the frame is determined by the upper-layer applications. Packets with deadlines arrive at the beginning of each frame and will be discarded if missing their deadlines, which are in the same frame. Each link of the network is associated with a quality of service constraint and an average transmit power constraint. For this system, a MaxWeight-type problem for which the solutions achieve the throughput optimality is formulated. Since the computational complexity of solving the MaxWeight-type problem with exhaustive search is exponential even for a single-link system, a greedy algorithm with complexity O(nlog(n)) is proposed, which is also throughput optimal.

The outpatient healthcare network is modeled as a discrete-time queueing network, in which patients receive diagnosis and treatment planning that involves collaboration between multiple service stations. For each patient, only the root (first) appointment can be scheduled as the following appointments evolve stochastically. The cyclic planing horizon is a week. The root appointment is optimized to maximize the proportion of patients that can complete their care by a class-dependent deadline. In the optimization algorithm, the sojourn time of patients in the healthcare network is approximated with a doubly-stochastic phase-type distribution. To address the computational intractability, a mean-field model with convergence guarantees is proposed. A linear programming-based policy improvement framework is developed, which can approximately solve the original large-scale stochastic optimization in queueing networks of realistic sizes.
Date Created
2020
Agent

Computer Vision Methods for Urinary Tract Infection Diagnostics

158302-Thumbnail Image.png
Description
Antibiotic resistance is a very important issue that threatens mankind. As bacteria

are becoming resistant to multiple antibiotics, many common antibiotics will soon

become ineective. The ineciency of current methods for diagnostics is an important

cause of antibiotic resistance, since due to their

Antibiotic resistance is a very important issue that threatens mankind. As bacteria

are becoming resistant to multiple antibiotics, many common antibiotics will soon

become ineective. The ineciency of current methods for diagnostics is an important

cause of antibiotic resistance, since due to their relative slowness, treatment plans

are often based on physician's experience rather than on test results, having a high

chance of being inaccurate or not optimal. This leads to a need of faster, pointof-

care (POC) methods, which can provide results in a few hours. Motivated by

recent advances on computer vision methods, three projects have been developed

for bacteria identication and antibiotic susceptibility tests (AST), with the goal of

speeding up the diagnostics process. The rst two projects focus on obtaining features

from optical microscopy such as bacteria shape and motion patterns to distinguish

active and inactive cells. The results show their potential as novel methods for AST,

being able to obtain results within a window of 30 min to 3 hours, a much faster

time frame than the gold standard approach based on cell culture, which takes at

least half a day to be completed. The last project focus on the identication task,

combining large volume light scattering microscopy (LVM) and deep learning to

distinguish bacteria from urine particles. The developed setup is suitable for pointof-

care applications, as a large volume can be viewed at a time, avoiding the need

for cell culturing or enrichment. This is a signicant gain compared to cell culturing

methods. The accuracy performance of the deep learning system is higher than chance

and outperforms a traditional machine learning system by up to 20%.
Date Created
2020
Agent

Predicting and Controlling Complex Dynamical Systems

158202-Thumbnail Image.png
Description
Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount

Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally, due to the intrinsic nonlinear dynamics, they have tremendous rich system behavior, such as bifurcation, synchronization, chaos, solitons. To develop methods to predict and control those systems has always been a challenge and an active research area.

My research mainly concentrates on predicting and controlling tipping points (saddle-node bifurcation) in complex ecological systems, comparing linear and nonlinear control methods in complex dynamical systems. Moreover, I use advanced artificial neural networks to predict chaotic spatiotemporal dynamical systems. Complex networked systems can exhibit a tipping point (a “point of no return”) at which a total collapse occurs. Using complex mutualistic networks in ecology as a prototype class of systems, I carry out a dimension reduction process to arrive at an effective two-dimensional (2D) system with the two dynamical variables corresponding to the average pollinator and plant abundances, respectively. I demonstrate that, using 59 empirical mutualistic networks extracted from real data, our 2D model can accurately predict the occurrence of a tipping point even in the presence of stochastic disturbances. I also develop an ecologically feasible strategy to manage/control the tipping point by maintaining the abundance of a particular pollinator species at a constant level, which essentially removes the hysteresis associated with tipping points.

Besides, I also find that the nodal importance ranking for nonlinear and linear control exhibits opposite trends: for the former, large degree nodes are more important but for the latter, the importance scale is tilted towards the small-degree nodes, suggesting strongly irrelevance of linear controllability to these systems. Focusing on a class of recurrent neural networks - reservoir computing systems that have recently been exploited for model-free prediction of nonlinear dynamical systems, I uncover a surprising phenomenon: the emergence of an interval in the spectral radius of the neural network in which the prediction error is minimized.
Date Created
2020
Agent

Smart resource allocation in internet-of-things: perspectives of network, security, and economics

157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices.

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
Date Created
2019
Agent

Vector sensors and user based link layer QoS for 5G wireless communication applications

157188-Thumbnail Image.png
Description
The commercial semiconductor industry is gearing up for 5G communications in the 28GHz and higher band. In order to maintain the same relative receiver sensitivity, a larger number of antenna elements are required; the larger number of antenna elements

The commercial semiconductor industry is gearing up for 5G communications in the 28GHz and higher band. In order to maintain the same relative receiver sensitivity, a larger number of antenna elements are required; the larger number of antenna elements is, in turn, driving semiconductor development. The purpose of this paper is to introduce a new method of dividing wireless communication protocols (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links using a new link layer communication model in concert with a smart antenna aperture design referred to as Vector Antenna. A vector antenna is a ‘smart’ antenna system and as any smart antenna aperture, the design inherently requires unique microwave component performance as well as Digital Signal Processing (DSP) capabilities. This performance and these capabilities are further enhanced with a patented wireless protocol stack capability.
Date Created
2019
Agent

Design and Performance Analysis of Functional Split in Virtualized Access Networks

157053-Thumbnail Image.png
Description
Emerging modular cable network architectures distribute some cable headend functions to remote nodes that are located close to the broadcast cable links reaching the cable modems (CMs) in the subscriber homes and businesses. In the Remote- PHY (R-PHY) architecture, a

Emerging modular cable network architectures distribute some cable headend functions to remote nodes that are located close to the broadcast cable links reaching the cable modems (CMs) in the subscriber homes and businesses. In the Remote- PHY (R-PHY) architecture, a Remote PHY Device (RPD) conducts the physical layer processing for the analog cable transmissions, while the headend runs the DOCSIS medium access control (MAC) for the upstream transmissions of the distributed CMs over the shared cable link. In contrast, in the Remote MACPHY (R-MACPHY) ar- chitecture, a Remote MACPHY Device (RMD) conducts both the physical and MAC layer processing. The dissertation objective is to conduct a comprehensive perfor- mance comparison of the R-PHY and R-MACPHY architectures. Also, development of analytical delay models for the polling-based MAC with Gated bandwidth alloca- tion of Poisson traffic in the R-PHY and R-MACPHY architectures and conducting extensive simulations to assess the accuracy of the analytical model and to evaluate the delay-throughput performance of the R-PHY and R-MACPHY architectures for a wide range of deployment and operating scenarios. Performance evaluations ex- tend to the use of Ethernet Passive Optical Network (EPON) as transport network between remote nodes and headend. The results show that for long CIN distances above 100 miles, the R-MACPHY architecture achieves significantly shorter mean up- stream packet delays than the R-PHY architecture, especially for bursty traffic. The extensive comparative R-PHY and R-MACPHY comparative evaluation can serve as a basis for the planning of modular broadcast cable based access networks.
Date Created
2019
Agent

An Approach to QoS-based Task Distribution in Edge Computing Networks for IoT Applications

156819-Thumbnail Image.png
Description
Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices,

Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring substantial computing resources to computing systems with sufficient computing resources, such as servers, cloud systems, and/or data centers for processing. However, this offloading method suffers from both high latency and network congestion in the IoT infrastructures.

Recently edge computing has emerged to reduce the negative impacts of tasks offloading to remote computing systems. As edge computing is in close proximity to IoT devices, it can reduce the latency of task offloading and reduce network congestion. Yet, edge computing has its drawbacks, such as the limited computing resources of some edge computing devices and the unbalanced loads among these devices. In order to effectively explore the potential of edge computing to support IoT applications, it is necessary to have efficient task management and load balancing in edge computing networks.

In this dissertation research, an approach is presented to periodically distributing tasks within the edge computing network while satisfying the quality-of-service (QoS) requirements of tasks. The QoS requirements include task completion deadline and security requirement. The approach aims to maximize the number of tasks that can be accommodated in the edge computing network, with consideration of tasks’ priorities. The goal is achieved through the joint optimization of the computing resource allocation and network bandwidth provisioning. Evaluation results show the improvement of the approach in increasing the number of tasks that can be accommodated in the edge computing network and the efficiency in resource utilization.
Date Created
2018
Agent

Security and Privacy in Mobile Devices: Novel Attacks and Countermeasures

156796-Thumbnail Image.png
Description
Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.
Date Created
2018
Agent