Description
Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount

Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally, due to the intrinsic nonlinear dynamics, they have tremendous rich system behavior, such as bifurcation, synchronization, chaos, solitons. To develop methods to predict and control those systems has always been a challenge and an active research area.

My research mainly concentrates on predicting and controlling tipping points (saddle-node bifurcation) in complex ecological systems, comparing linear and nonlinear control methods in complex dynamical systems. Moreover, I use advanced artificial neural networks to predict chaotic spatiotemporal dynamical systems. Complex networked systems can exhibit a tipping point (a “point of no return”) at which a total collapse occurs. Using complex mutualistic networks in ecology as a prototype class of systems, I carry out a dimension reduction process to arrive at an effective two-dimensional (2D) system with the two dynamical variables corresponding to the average pollinator and plant abundances, respectively. I demonstrate that, using 59 empirical mutualistic networks extracted from real data, our 2D model can accurately predict the occurrence of a tipping point even in the presence of stochastic disturbances. I also develop an ecologically feasible strategy to manage/control the tipping point by maintaining the abundance of a particular pollinator species at a constant level, which essentially removes the hysteresis associated with tipping points.

Besides, I also find that the nodal importance ranking for nonlinear and linear control exhibits opposite trends: for the former, large degree nodes are more important but for the latter, the importance scale is tilted towards the small-degree nodes, suggesting strongly irrelevance of linear controllability to these systems. Focusing on a class of recurrent neural networks - reservoir computing systems that have recently been exploited for model-free prediction of nonlinear dynamical systems, I uncover a surprising phenomenon: the emergence of an interval in the spectral radius of the neural network in which the prediction error is minimized.
Downloads
PDF (40.7 MB)
Download count: 5

Details

Title
  • Predicting and Controlling Complex Dynamical Systems
Contributors
Date Created
2020
Resource Type
  • Text
  • Collections this item is in
    Note
    • Doctoral Dissertation Electrical Engineering 2020

    Machine-readable links